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We consider symplectic methods for the numerical integration of Hamiltonian problems,
i.c. methods that preserve the Poincaré integral invariants. Examples of symplectic
methods are given and numerical experiments are reported.

1. Introduction

We are concerned with autonomous Hamiltonian systems
p'=-0H/o¢, ¢ =0H/0p, 1<i<d, (1)

where a dot represents differentiation with respect to ¢t (time), d is the number of
degrees of freedom and H = H(p, q) = H(p',...,p% ¢%,...,q¢?) denotes the Hamil-
tonian. The time t flow of (1) will be denoted by ¢: n; thus, for fixed (po, Qo) and
varying ¢, (p(1),q(t)) = ¢¢,n(po,qo) is the solution of (1) with initial condition
p(0) = py, q(0) = qo. For each fixed value of t, ¢¢ u is a transformation in phase
space that has the property of symplecticness or canonicity, i.e. for any bounded two-
dimensional surface D in phase space the sum of the two-dimensional oriented areas
of the d projections of D onto the planes (p*, ¢') is the same as the sum of the two-
dimensional oriented areas of the d projections of ¢; i (D) onto the planes ', 9.
In other words ¢, y preserves the differential form w — dp' Adg' + ... + dp? A dgd.
This implies the conservation of the exterior powers w?, ... w? (Poincaré integral
invariants). The conservation of w? is the conservation of the 2d-dimensional vol-
ume in phase space (Liouville’s theorem). The symplectic property of the flow is the
characteristic feature of Hamiltonian systems: a differential system with a symplec-
tic flow must be a Hamiltonian system. Hamiltonian dynamics possess a number of
Properties (absence of attractors, recurrence, ... ) not shared by ‘general’ dynamics.
All those properties directly derive from the symplecticness of Hamiltonian flows.
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A one-step method® for (1) used with step length h is of the form (pPn+1,qn+1)
= ¥u,1(Pn,qn), Where (Pn,qQn) is the numerical solution at time level t, = nh. For
instance, for Euler’s method ¥4 y(p,q) = (p— hdH/8q,q+ hdH/0p). Therefore
the numerical solution at 1,, is given by (Pn,qn) = ¥ u(Po, o), While for the true
solution (p(tn),a(tn)) = é7 y(Po, Qo). Hence ¥y 5 should be an approximation to
énu- U Yamg = énu +O(h™*1) as h — 0, the numerical method is said to be
of order r. It then follows that (p,,q.) = (P(tn),q(tn)) a8 h — 0 and n — oo
with t, fixed. For classical methods such as explicit Runge-Kutta methods, the
transformation 5 g turns out not to be symplectic. Then the numerical method
misses the important features associated with symplectic transformations. However
there are symplectic methods, i.e. methods for which ¢, i is guaranteed to be a
symplectic transformation.

There has been much recent interest in the numerical integration of (1) by
means of symplectic methods, starting with the work of Ruth, Channell and Feng.
An extensive list of references can be seen in the survey?.

2. Some Symplectic Methods

Broady speaking, symplectic methods can be divided into two categories. Firstly
there are methods that are derived via the Hamiltonian formalism (generating
functions®, Lie transforms?, etc.). These methods are only applicable to Hamilto-
nian problems. A second group of symplectic integrators consists of formulas that
belong to well-known families of methods and just ‘happen’ to be symplectic when
applied to Hamiltonian problems. For instance Lasagni®, Sanz-Serna® and Suris’
showed independently that Runge-Kuta formulas whose coefficients satisfy some
relations are automatically symplectic. However symplectic Runge-Kutta methods
are necessarily implicit. The class of Runge-Kutta-Nystrom (RKN) methods! con-
tains integrators that are both explicit and symplectic. RKN methods are applicable
to systems of the special form

p=f(q), a=p (2)

i.e. to second order systems q = f(q). If f is the gradient of a scalar function
—V(q), then (2) is a Hamiltonian system with H = (1/2)pTp + V(q). An explicit
RKN method is specified by an integer s (the number of stages) and real constants
aij, bi, Bi, 1, 1 1<, 1< j<i<s. A step from time 1, to time tn41 with an
RKN formula begins by computing the internal stages Q;

Q: =qn+h‘/spn+h2za.~j £f(Q;), 1<i<s 3)
j<s
Then
Pn41 = Pn + th, f(QI)? (4)
i=1
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and s
Un+1 = Gn +hpa + 1Y Bif(Qi). (5)

=1
The function f must be evaluated at each of the s stages Q;. These s function

evaluations per step represent the bulk of the computational work of the method.
The method (3)—(5) is symplectic? if

Bi = bi(1 — %), 1<i<s, (6)
and
a;; =b(vi—7) 1<j<i<s. (7)

For symplectic methods with s stages we have s coefficients b; and s coefficients 7;
as free parameters; the coefficients f; and a;; are given by (6) and (7) respectively.

Okunbor and Skeel® point out that when (6)—(7) hold, (3)~(5) can be rewritten
as

Qi = Qiai+h(ri—7i-1)Picy, 1<Zi<s,
P, = P,1+hbf(Q;), 1<i<s,

+r = Q.+ h(1-19,)P,

Prt1 = P,

with Qo = q,, Po = pn, 70 = 0. This alternative formulation reveals that (3)—(7)
only requires the storage of two d-dimensional vectors; one of these successively
contains q,, Qi, ..., Q,, Qn41; the other is used for p,, Py, ..., P,, Ppy1-

Calvo and Sanz-Serna® have derived an optimized, fourth-order, explicit, sym-
plectic RKN method. They set 4; = 0, ¥, = 1; this guarantees that the last stage
Q, of the current step coincides with the first stage of the next step, thus saving a
function evaluation per step. Their method has s = 5 (four evaluations per step)
and hence there are eight free parameters vs, 93, 74, b1, ..., bs. To ensure order
four, the method coefficients must satisfy six equations!®, which leaves two free
parameters. These were chosen so as to minimize the error constants in the O(h%)
truncation error Y4 g — én 5. The r'esult 18

11 =0 by = 0.061758858135626325
72 = 0.205177661542286386 by = 0.338978026553643355
73 = 0.608198943146500973 bs = 0.614791307175577566
74 = 0.487278066807586965 by = —0.140548014659373380
s =1 bs = 0.125019822794526133

For higher order symplectic RKN methods see Calvo and Sanz-Serna!l.

3. Backward Error Interpretation

An appealing feature of symplectic integrators is that they make it possible to
perform a backward error analysis. In numerical analysis, backward error analysis
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means interpreting the pumerical result of a problem P as an ezact solution to a
problem P close to P. Let ¥nn be a symplectic integrator of order r, so that
Ynu — OnH = O(h™*'). Then? for each integer p > r, no matter how large, it
is possible to construct a perturbed Hamiltonian function H,(h) = H + O(k") in
such a way that ¥a g — @n H,(h) = O(h?+1). Thus, if we ignore the small remainder
O(h”“), we can say that the numerical method ¥ x 18 the h-flow of a perturbed
Hamiltonian problem with Hamiltonian H,(h).

An illustration is given in Fig. 1. The system being integrated is the pendulum
system p = — sing, ¢ = p; the dotted line depicts the true solution with initial value
g = 2, p = 0; the stars correspond to the numerical solution obtained for h = 2
with the symplectic first-order RKN method specified by s = 1, 11 = 1,5 =1
When p = 2, Hy(h) turns out to be (1/2)p? + (1 —cos q) +(h/2)psing; the dash-dot
line represents the level set of this Hamiltonian thorugh the point ¢ = 2,p=0.1t
is clear that the computed points that were meant to approximate the pendulum
motion are in fact describing the motion of the perturbed problem.
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Fig. 1. Backward error interpretation.

In a modelling situation where the exact form of the Hamiltonian may be in
doubt, the fact that integrating the model numerically introduces perturbations in
the Hamiltonian comparable to the uncertainty in H inherent in the model is the

most that can be hoped for.
On the other hand, when a nonsymplectic algorithm is used the differential
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system really solved by the method is not Hamiltonian. For instance in Fig. 1
Euler’s method would produce a spiral, something that cannot be matched by a
Hamiltonian system. Here the process of numerical integration perturbs the model
in such a way as to take it out of the Hamiltonian class.

4. Numerical Illustrations

We first consider the Newton potential V(¢',¢q?) = —1/|lq]| (Kepler’s problem)
with initial condition p' = 0, p?2 = /(1 +e)/(1—e¢), ¢! = 1 —¢, ¢ = 0. Here
e is the eccentricity of the orbit, that in the experiments to be reported is chosen
to be ¢ = 0.5. (The value of e does not significantly influence the outcome of the
experiments.) The solution is 2x-periodic. Errors are measured in the Euclidean
norm of R*. The problem was integrated for 21870 periods with the fourth order
RKN method described in Section 2, implemented with constant step sizes and also
with an efficient variable step size, nonsymplectic fourth order RKN code due to
Dormand et al.’2. 1t should be pointed out that while variable step sizes enhance the
performance of conventional codes, they are detrimental to symplectic integrators?®.
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Fig. 2. Kepler’s problem. Error against computational cost.

Fig. 2 is an efficiency plot that shows errors at the end of the integration against
computational cost measured in number of function evaluations. The runs depicted
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correspond to the symplectic algorithm with h = 2x/256, h = 2x/512, h = 2% /1024
(stars joined by a dash-dot line) and the standard code with tolerances 10~°, 10-19,
107! (circles joined by a solid line). It is apparent that the symplectic algorithm
is more efficient by a factor of two. This is in spite of the fact that the symplectic
algorithm requires four function evaluations per step and the standard algorithm
uses only three. The gains in efficiency associated with symplecticness are due to the
fact that in symplectic algorithms the error grows linearly with ¢, while in general
methods that growth is quadratic’®, This is illustrated in Fig. 3 that shows error
as a function of t for both methods.
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Fig. 3. Kepler's problem. Error against { measured in periods.

The second test problem is taken from Herbst and Ablowitz!3. It originates
from the sine-Gordon equation

i — ugs +sinu=0, 0<z<L=2/2x, t>0, (8)
subject to periodic boundary conditions and to the initial conditions
u(z,0) = 7 + 0.1 cos(27z/L), u(z,0) = 0. 9)

The equation (8) may be thought of as describing the motion of a family of pendula.
At each value of z, 0 < < L we have one pendulum. The term us. provides
coupling between the motions of neighboring pendula. It represent a force that
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tries to keep a common value of the angle u for all the pendula. From the initial
condition (9) we see that all pendula are initially left near the unstable equilibrium
u = %. The pendulain 0 < z < L/4 or 3L/4 < z < L start above the value u = x
and hence will increase u in order to approach the stable equilibrium at u = 2.
The pendula in L/4 < z < 3L/4 start below the value u = x and will decrease u
to approach the stable equilibrium at u = 0. This causes the term u,, to become
important. The effect of the restoring force is that the pendula are prevented from
reaching the lowest u = 2x or u = 0 positions and rather start going upwards back
to the initial positions, leading to a periodic motion. The solid line in Figure 4
represents u as a function of 1, 0 < t < 16L for the pendulum at z = L/2.
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Fig. 4. Sine-Gordon problem. Solution at * = L/2 against 1.

As in!3) the equation (8) is discretized in space by the standard pseudospectral
technique, with a mesh-length Az = L/32. This leads to a Hamiltonian system of
the form (2) where the dependent variables q are the 32 discrete Fourier coefficients
of the solution. This system of ordinary differential equations was integrated for
0 < t < 16L =~ 142.17, both with the fourth order symplectic method and with
an eighth order RKN code with variable step sizes due to Dormand et al}*. The
standard method was run with absolute error tolerances in the range 1073 to 10713,
Smaller tolerances were not tried because we felt they would be too close to the size
of the round-off error associated with the evaluation of the force f (this requires a
couple of discrete Fourier transforms). None of the values of the tolerance we tried
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led to a successful integration and the conventional method was not able to come
up with the right qualitative behavior of the solution. The dash-dot line in Fig. 4
corresponds to the tolerance 10713, z = L/2, the computed solution is completely
wrong for ¢t > 80. For this value of the tolerance the code uses 32810 function
evaluations. On the other hand with h = 1/32 (18200 evaluations) the fourth order

symplectic method correctly identifies the right qualitative behavior (solid line in
Fig. 4).
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