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PARTITIONED RUNGE-KUTTA METHODS
FOR SEPARABLE HAMILTONIAN PROBLEMS

L. ABIA AND J. M. SANZ-SERNA

Abstract. Separable Hamiltonian systems of differential equations have the

form dp/dt = -dH/dq, dq/dt = dH/dp, with a Hamiltonian function H
that satisfies H = T(p) + K(q) (T and V are respectively the kinetic and

potential energies). We study the integration of these systems by means of

partitioned Runge-Kutta methods, i.e., by means of methods where different

Runge-Kutta tableaux are used for the p and q equations. We derive a suffi-

cient and "almost" necessary condition for a partitioned Runge-Kutta method

to be canonical, i.e., to conserve the symplectic structure of phase space, thereby

reproducing the qualitative properties of the Hamiltonian dynamics. We show

that the requirement of canonicity operates as a simplifying assumption for the

study of the order conditions of the method.

1. Introduction

The recent literature, both in mathematics and in physics, has shown a great

interest in the integration of Hamiltonian systems of differential equations

(1.1) dpI/dt = -dH/dqI,    da1/dt = dH/dp1,        X<I<N,

by means of so-called symplectic or canonical methods. An extensive list of ref-
erences may be found in the survey [10]. In (1.1), H=H(px, ... ,pN, qx, ... ,qN)

is the Hamiltonian function, a sufficiently smooth real function of 2N real

variables. The integer /V is called the number of degrees of freedom in 77.

By definition, canonical methods preserve the so-called symplectic structure in
(p, q)-space. The flow of (1.1) also preserves the symplectic structure, and this

fact actually implies all the properties of the Hamiltonian dynamics [1, 7, 10].

Therefore, canonical methods can be expected to be better suited to the inte-

gration of ( 1.1 ) than their noncanonical counterparts.

An 5-stage Runge-Kutta (RK) method

(1.2) [¿    ,

a = laij] > b = [b¡], is canonical if [6, 9, 13]

(1.3) biüij + bjüji -b¡bj = 0,        X <i, j <s.
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618 L. ABIA AND J. M. SANZ-SERNA

Furthermore, for methods without redundant stages, (1.3) is also necessary for

canonicity [6]. The well-known RK schemes based on Gauss-Legendre quadra-

ture are canonical [9]. Diagonally implicit methods satisfying (1.3) are derived

in [12] and tested in [4]. On the other hand, it is easy to see that (1.3) implies
that (1.2) cannot be explicit.

A family of one-step methods that includes explicit canonical schemes is

given by the so-called partitioned Runge-Kutta (PRK) methods, where different

Butcher tableaux are used to advance the p and the q components of (1.1).

More precisely, with the notations

(1.4) f' =-dH/dq1,     g'= dH/dp1,        X<I<N,

a step (p, q) (-»• (p*, q*) of an s-stage PRK scheme is given by the equations

s s

(1.5) Y, = p + /2^a,7k,,    Zi = q + hYíAijlj,        X<i<s,
y=i j=i

s s

(1.6) p* = p-|-A £>*,-,        q* = q + /z£M,
¿=i i=i

where k, = f(Y,-, Z;), 1,- = g(Y,, Z,), 1 < i < s.
In a symbolic form, the method ( 1.5)—(1.6) can be specified by the tableaux

In one of the very first papers on canonical integration, Ruth [8] constructed

particular examples of methods of the form (1.5)—(1.6) that are canonical when

applied to separable Hamiltonian systems, i.e., to systems where the Hamil-

tonian function is of the form

(1.8) 77(p,q) = r(p) + F(q).

(In mechanical applications, T and V correspond to the kinetic and potential

energy, respectively.) Ruth did not use the RK formalism and worked with

generating functions.

The present paper is devoted to a general study of PRK methods for the

numerical integration of Hamiltonian problems. In §2, we give a sufficient
condition for a PRK method to be canonical when applied to separable Hamil-

tonian systems. In §§3 and 4, we show that this sufficient condition operates as

a simplifying assumption [2, p. 214; 5, p. 203]; i.e., the number of equations for

a method to have order p is smaller for methods satisfying this condition than

for general methods. In §5 we prove that the sufficient condition for canonicity

is "almost" necessary. A numerical example is presented in §6 and the final

section contains the conclusions.

Before closing the introduction we would like to mention a convention we

have already used: lower case subscripts are associated with the stages of the

method and run from 1 to 5 ; upper case superscripts are associated with the
components of the differential system and run from 1 to N.

2. Canonical PRK methods

In this section we investigate under which condition the PRK method (1.5)-

(1.6) is canonical. By definition, a method is said to be canonical for a class of
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PARTITIONED RUNGE-KUTTA METHODS 619

Hamiltonian problems if, for all Hamiltonian functions 77 in this class, and at

each point (po, qn) in the domain of definition of 77,

(2.1) dp* Adq* -dpAdq = 0,

whenever the steplength A is small enough for the step (p, q) •-+ (p*, q*) to be

a well-defined mapping in a neighborhood of (po, qo) •
Exactly the same manipulations used in the proof of Theorem 1 of [9] show

that the left-hand side of (2.1) equals

s s

(2.2) A J^Mkí A dZi + BidY, A dl¡] - h2 J] (M¿; + BjUp - A,57)í/k, A d\¡.
i=i i,j=i

Now it is clear that the second sum in (2.2) will vanish if we demand that

(2.3) biAij + Bjüji - biBj = 0,        I < i, j < s,

a condition which reduces to (1.3) in the case A = a and B = b (i.e., if the
PRK method is actually an RK method). Now, to ensure that the first sum in

(2.2) also vanishes, there are two possibilities:

(i) It may be noted that, as proved in [9, p. 880],

i/k, A dZj + d\i r\dlj = 0,        X <i<s,

so that the condition b¡ = B¡, X < i < s, and (2.3) ensure canonicity.

(ii) Attention may be restricted to separable Hamiltonian problems (1.8).

Then f is only a function of q and

dk¡ A dZ¡ = dÍ(Z¡) A dZ,■ = 0,        1 < i < s,

because the Jacobian matrix of f = - grad V is symmetric and the wedge prod-

uct is skew-symmetric. Similarly

d\i hd\i = 0,        X <i<s,

and canonicity follows.

In this paper we restrict our attention to the second of the possibilities above.

Let us then state the following theorem.

Theorem 2.1. Assume that the PRK method (1.7) satisfies the condition (2.3).

Then it is canonical when applied to separable Hamiltonian problems (1.1),

(1.8).

The previous result was announced by one of the present authors at the 1989

London Numerical ODE meeting (see [11]) and has been derived independently

by Suris [14]. Actually (2.3) is "almost" necessary for canonicity as we shall later

show.
In later developments we shall need the generating function of a canonical

PRK method [1, 10, 12]. By definition, this is a function S = S(p, q* ; A) such
that the relations

(2.4) p* = dS/dq*,        q = dS/dp

reproduce the equations (1.6) that define the time-step (p, q) >-> (p*, q*) of the

method. We have
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620 L. ABIA AND J. M. SANZ-SERNA

Theorem 2.2. Assume that the PRK (1.7) satisfies (2.3) and is applied to the
separable Hamiltonian problem (1.1), (1.8). Then the corresponding generating

function is given by

9TiC-hYJbiV(Zi)-hYJBiT(\i)
i i

+ y *£(B,aiJ - bjAji + bJBl)f(Zj)Tg(Yi).

ij

Furthermore,

(2.6) T(p, q*; A) := || = -£ biV(ZI) - 5>T(Y;).
i i

Note that in (2.5)-(2.6) the stages Zj and Y, are to be interpreted as func-

tions of p, q* defined in ( 1.5)—(1.6). Clearly, the implicit function theorem

guarantees that this interpretation is (locally) possible if 77 is smooth and A

small. To prove the theorem, it is sufficient to differentiate (2.5) and to perform

some manipulations to arrive at (2.4) and (2.6). The details will not be given.

3. Order conditions

In this section we consider the case where the PRK method (1.5)—(1.6) is

applied to a partitioned system of the form

(3.1) dj>/dt = i(q),        dq/dt = g(v),

that ¿s not assumed to be Hamiltonian; i.e., we do not suppose that the vector
fields f and g are gradients of scalar fields - V and T, respectively. For

simplicity we still assume that the vectors p and q have the same dimension
TV. (There is no difficulty in extending the material in this section to the case
where the dimensions of p and q do not coincide. Note also that one can

always add dummy equations dq1 ¡dt = 0 or dp1 /dt = 0 to ensure that p and

q have equal dimensions.)

It is well known (see, e.g., [5, §11.14]) how the order p of ( 1.5)—( 1.6) can
be characterized in terms of the Butcher arrays in (1.7) via bicolor rooted trees.

The first column in Figure 1 gives the relevant graphs up to order four. The

roots have been marked with crosses. Note that, throughout the paper, we just

consider bicolor rooted trees where white (respectively black) vertices have only

black (respectively white) sons. This is because, in (3.1), f only depends on q,

while g only depends on p. For (1.7) to possess order of consistency p , it is

necessary and sufficient that for all bicolor rooted trees ßpx with order (i.e.,

number of vertices) < p

(3-2) w"t) = ?asy
where O(ßpx) and y(ßpx) are, respectively, the elementary weight and the

density of ßpx.
We recall that the density is an integer-valued function recursively defined

as follows: y(ßpx) equals the order of ßpx times the product of the densities

of the bicolor rooted trees that arise when the root of ßpx is chopped off, the

densities of the bicolor rooted trees with one vertex ßpx\\,  ßpxi2  being

S(p,q*;A)

(2.5)
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3,2

4,1

4,2
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Figure 1.
1,2,3,4

Rooted bicoler «-trees and bicolor «-trees,  « =

one. Note that, when computing the density, the coloring of the vertices plays
no role; for instance ßpxt,^ and ßpx^% in Figure 1 have the same density 24.

Later, we use the function a(ßpx) (number of monotonie labellings [2, §145]).

Again, the coloring of the nodes plays no role in the value of this function.
On the other hand, it is well known how to construct the elementary weight

corresponding to a given bicolor rooted tree. For instance, for the tree ßpx4ys
in Figure 1 we have

5Z biAijAikakl.
ijkl

In general a white vertex in the graph gives rise to a lower case letter b or a

and a black vertex gives rise to an upper case letter B or A . The letters b and

B are associated with the root, and the letters a and A with vertices other

than the root. There is a summation index associated with each vertex. The

index corresponding to the root appears as a subscript of a b or B letter. If
a vertex v with index, say, j is son of the vertex with index, say, i, then the

letter associated with v has subindices ij .

Let us also write the (partitioned) elementary differential associated with the

ßpX4ts.  At a point (p, q) in phase space, this is the A/-dimensional vector
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622 L. ABIA AND J. M. SANZ-SERNA

whose 7th component is given by

y-   a2/7 sjdsKfL
lJÍLdqldq 9pL

(all functions evaluated at p or q, as appropriate). Now, white (resp. black)

vertices are associated with components of f (resp. g).

The equations (3.2) corresponding to different bicolor rooted trees are not

independent if we assume that the PRK method satisfies the canonicity condi-

tion (2.3). In other words, (2.3) behave as simplifying assumptions, whereby,

to impose order of consistency p, it is not necessary to take into account all

bicolor rooted trees with p or fewer vertices. In order to investigate this issue,

we need to consider bicolor (unrooted) trees. The bicolor trees of order < 4

are given in the right column of Figure 1. We can define a bicolor tree as an

equivalence class consisting of bicolor rooted trees differing only in the choice

of the root. In Figure 1 bicolor rooted trees belonging to the same bicolor tree

appear in the same row. (Our treatment of the graph theory we need will be

sketchy and based on pictorial representations. A rigorous treatment, like that

given in [12], would result in too long a paper.)

It will be useful later to observe that, in Figure 1, some bicolor trees, like

/?*3, i - ß?z, 2, appear in pairs, each member of the pair being the photographic

negative of the other. However, some bicolor trees are their own photographic

negative, like ßx2y x or /?t4j3 . It is not difficult to see that the latter occurrence

takes place if and only if ßx arises from coloring the vertices of what in [12]

was called a superfluous (uncolored, unrooted) tree.

The main result of this section is then the following.

Theorem 3.1. Assume that the PRK method ( X .7) satisfies (2.3) and has, at least,
oder of consistency p - X, p > 2, wA^« applied to all partitioned systems of

the form (3.1).  Let ßx be a bicolor tree with p vertices.  Then the following

statements are equivalent:

(i)  The condition (3.2) holds for all bicolor rooted trees ßpx belonging to

ßx.

(ii)  The condition (3.2) holds for a bicolor rooted tree ßpx belonging to ßx.

(iii)  The following homogeneous order condition holds:

£ a(ßpx)y(ßpx)<t>(ßpx)

ßpx€ßx

,_ _s ßpx has white root

(3.3) ^
£        a(ßpx)y(ßpxmßpx).

ßpxeßx
ßpx has black root

Proof. Clearly (i) implies (ii). Let us show that (ii) implies (i). Choose two

adjacent vertices v and w in ßx and consider four bicolor rooted trees as

follows (see Figure 2). We denote by ßpxv (resp. ßpxw) the bicolor rooted

tree obtained by highlighting in ßx the vertex v (resp. w). We denote by

ßpxy and ßpxxv the bicolor rooted trees, with roots at v and w , respectively,
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ßpiV ßP^W ßPTw

Figure 2. The construction for Theorem 3.1

that arise when the edge [v , w] is deleted from ßx. On using the argument in

the proof of [12, Theorem 5.1], we obtain that

1

yißptv.

and that (2.3) implies

+
1 1 1

y{ßp*w)    y(ßptv)y(ßprw)

<&(ßpxv) + <&(ßpxw) = <S>(ßpxv)<b(ßpxw)

(3.4)

Thus, since the method has order at least p

X
®(ßpxv) + d>(ßpxh

1,

+
1

y(ßpxv)    y(ßpxw) '

so that the equations (3.2) associated with ßpxv and ßpxw are equivalent.

This implies that (ii) is sufficient for (i).

The equivalence between (i) and (iii) is established next. We need the identity

(3.5) a(ßpx) £ a(ßpx).

ßpxeßx
ox has white root

ßpxeßx
ßpx has black root

If the (uncolored) tree x obtained from ßx by disregarding the coloring of

the vertices is superfluous, then (3.5) has been proved in [12, Theorem 4.5].

If x is superfluous, then (3.5) is trivial. (For instance, for ßx4^ in Figure 1,

the sum in the left in (3.5) is a(ßpx4<i) + a(ßpx4(,), the sum in the right is

a(ßpx4j) + a(ßpx4,g). These are the same since the a-function is colorblind.)

Now it is obvious that (3.5) leads to the conclusion that (i) implies (iii).

Conversely, assume that &(ßpx)y(ßpx) ^ 1 for some ßpx in ßx. Let us say

that <¡>y > X and that the root of ßpx is black. Then (3.4) reveals that, for

bicolor rooted trees belonging to ßp, one has Oy > 1 whenever the root is

black and Oy < 1 whenever the root is white. This and (3.5) show that (3.3)

cannot be true.   D
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624 L. ABIA AND J. M. SANZ-SERNA

Theorem 3.1 enables us to consider, for methods satisfying (2.3), one order

condition per bicolor tree, rather than one order condition per rooted bicolor

tree. Let us illustrate this point. In general, if a PRK method that is known to

have order > 2 is to have order > 3, we must impose the four conditions (cf.

Figure 1)

(3.6) ^2biAijAik = -,        ^2BiaUAjk = g ,
ijk ijk

and

(3.7) J2 B'aUaik = 3 >       £ biAi}a¡k = g .
ijk ijk

If the method satisfies (2.3), the conditions in (3.6) are equivalent, so that

one of them can be dispensed with, and, of course, the same applies to the

conditions in (3.7). This leaves two conditions. Alternatively, if we wish to use

the homogeneous form, for methods satisfying (2.3), both equations in (3.6)

are equivalent to

3 Y,biAijAik = 6^2BiüijAjk ,
ijk ijk

and both equations in (3.7) are equivalent to

6 Y^ biAijüjk = 3 Y2 Biauaik ■
ijk ijk

In order to see the number of conditions that remain when (2.3) holds, we

proceed as follows. Clearly, the number of bicolor rooted trees of a given order

is twice the number of (uncolored) rooted trees of the same order. On the other
hand, the number of bicolor trees of a given order p is twice the number of

nonsuperfluous p-Xrtts plus the number of superflourous p-trees. On employing

the generating functions for the number of rooted trees, trees and superfluous

trees (see e.g. [12]), one can now derive the information in Table 1.

Table 1

p Bicolor Bicolor

rooted /7-trees

_p-trees_

1 2 2
2 2 1
3 4 2
4 8 3
5 18 6
6 40 10
7 96 22
8 230 42
9 572 94
10 1438 203
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Remark 3.1. It is useful to examine what happens in the situation where in ( 1.7)

a = A and b = B ; i.e., one is effectively using the RK method (1.2). We begin

by noticing that the order of consistency of (1.2) when applied to the restricted

class of problems (3.1) is not higher than the classical order, i.e., than the order

when applied to general systems of differential equations

(3.8) dy/dt = f(y).

This can be seen by observing that if y(t) is a solution of (3.8), then

[yT(t), yT(t)]T is a solution of the system

dp/dt = i(q),        dq/dt = f(p),

which is of the form (3.1). Alternatively, it may be noted that, by considering

the RK method ( 1.2) as a particular case of a PRK method, and writing the order

conditions as in (3.2), we recover twice over the classical order conditions for

standard RK methods. (Since each rooted tree can be colored in two different

ways, we recover each order condition twice, e.g., ßpx4\ and ßpx4j in Figure

1 would both yield the order condition for the (uncolored) bushy rooted tree

with four vertices.) Assume now that (1.3) holds, so that we can employ the

homogeneous form (3.3) of the order conditions. If ßx arises from coloring a

nonsuperfluous tree, then the order condition (3.3) for the photographic negative

of ßx just reproduces the order condition for ßx. However, if ßx arises from
coloring a superfluous tree, then (3.3) is automatically satisfied, as each term in

the sum in the right is also present in the sum in the left. We conclude that for

RK methods satisfying (1.3) there is one order condition per nonsuperfluous

tree, thus recovering Theorem 3.1 of [12].

4. Canonical theory of the order

In this section we assume that the PRK method (1.7) is applied to separable

Hamiltonian problems. It is then possible to study the consistency of the method

as applied to this class of problems via the canonical theory introduced in [12].

However, we should emphasize that the order of consistency of PRK methods is

not increased by restricting attention to separable Hamiltonian problems, rather
than considering general problems of the form (3.1). This is a consequence of
the following result, which implies that, if the method has order p for separable

Hamiltonian problems, then (3.2) must hold for all bicolor rooted trees of order

< p and hence has order p for all problems (3.1).

Theorem 4.1. For each rooted bicolor tree ßpxo there is a separable Hamiltonian

system so that, if F(ßpx)(0) denotes the elementary differential associated with

ßpx evaluated at 0, the following holds true. The first component of (the vector)

F(ßpxo)(0) is / 0, while the first component of F(ßpx)(0) is 0 for all other
bicolor rooted trees.

Proof. Even though the proof is completely general, the underlying idea is best

presented in an example. Let us consider the graph in Figure 3 (next page),

where the vertices have been labelled with the root having label 1. We set

H = p2p3p4+p5p6+p1 +pS - qXq2q5qS - q3 - q4 - q6q7.

There are as many terms in 77 as vertices in the graph. The term p2pip4 was

introduced because we have a black vertex 2, with sons 3 and 4; the term psp6
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626 L. ABIA AND J. M. SANZ-SERNA

Figure 3. Graph for the proof of Theorem 4.1

originates from black vertex 5 with son 6, ... , the term -qxq2q5qs originates

from while vertex 1 with sons 2, 5, and 8, etc. The differential system associated

with this Hamiltonian function has /' = q2q5q& and gx = 0. At the origin,

all derivatives of these two functions are zero, except for

3/-1d'f
dq2dqidqs

= X

Hence, if an elementary differential at 0 has nonzero first component, the root

of the corresponding graph must be white and have three sons. The iteration

of this argument proves that all elementary differentials have 0 first component

except that associated with the bicolor rooted tree in Figure 3 (cf. [5, p. 134]).   o

Remark 4.1. In Theorem 4.1, the Hamiltonian function can be assumed to be
^°° , defined in the whole of T%2N and with bounded derivatives of all orders.

In fact, it suffices to perturb, away from the origin, the polynomial Hamiltonian
constructed in the proof.

The order theory of one-step canonical methods introduced in [12] implies

that, if (1.7) is consistent, then it has order p > 2 if and only if the function

r defined in (2.6) satisfies, at A = 0,

(4.1)
dn-ir

dhn-
o, 2< « <p.

p q

Here the notation in the partial derivative means that, once Y has been found

as a function of p, q*, and A , following the prescription (2.6), we should see

q* as a function of p, q, and A, and differentiate with respect to A, with

p, q fixed. To explicitly compute the partial derivative in (4.1), we use Faa

di Bruno's formula [5, p. 148] to express d"~xT/dh"~x\v^ in terms of partial

derivatives of T and V and of derivatives of the stages Y,, Z, with respect

to A. Then the latter derivatives can be written in terms of the elementary

differentials. The result is
"TI

(4.2)
d"-
dhn~x

p,q

1
n

a(ßpx)y(ßpxmßpx)d(ßpx),
ßpx has order n

where 9(ßpx) is a real-valued function of p and q.  For the bicolor rooted
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PARTITIONED RUNGE-KUTTA METHODS 627

trees with three vertices (see Figure 1), the explicit expressions are

d2v

dq1 dqJ
IJ

(4.4, •tfw.d-E^«'.

In general, there are as many summation indices as vertices other than the

root. A white (resp. black) root with r sons 7, J, ... introduces a factor

drV/dq'dqJ'••• (resp. drT/dp1 dpJ ■■■). A white (resp. black) vertex, dif-

ferent from the root, with label 7 and r sons labelled J, K, ... brings in a

factor drf/dqJ dqKd--  (resp. dr g1/dp3 dpKd-).
Now the key observation is that, for any two bicolor rooted tree ßpx and

ßpx' belonging to the same bicolor tree,

(4.7) d(ßpx) = ±d(ßpx'),

where, if both graphs have roots of the same (resp. different) color, the +

(resp. -) sign has to be taken. To prove (4.7), it is sufficient to use, in the

definition of 8, the relations f = - grad V, g = grad T in order to eliminate

the partial derivatives of V, T. For instance, from (4.3)-(4.4), we may write

Once (4.7) is available, (4.2) may be rewritten as

d"-xr 1      y^

dh»-
P'l ßx order n

(4.8)

£    a(ßpx)y(ßpx)<t>(ßpx)

ßpxeßx
.   white root

-     £    ci(ßpx)y(ßpxMßpx)

ßpx€ßx

black root

8(ßr),

where 6(ßx) denotes the common value of 6 for the white-rooted bicolor

rooted trees in ßx. It follows that, for a consistent method that satisfies (2.3)

to have order p > 1, it is sufficient that the homogeneous order condition (3.3)

holds for all bicolor trees ßx with < p vertices. This, of course, agrees with

Theorem 3.1. Furthermore, this condition for order p is also necessary, because

the f?'s are independent. More precisely, we have the following result.
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Figure 4. Graph for the proof of Theorem 4.2

Theorem 4.2. With the notations above, to each bicolor tree ßxo there corre-

sponds a separable Hamiltonian such that, at p = q = 0, 0(ßxo) ^ 0, while

6(ßx) = 0 for all bicolor trees ßx ^ ßxo ■

Proof. It is useful to begin by expressing 6(ßx) in terms of derivatives of V

and T (i.e., to use the relations f = -grad V, g = gradT to eliminate the

explicit occurrence of the derivatives of the components of f and g). For

instance, from (4.3),

e(ßx3,x) = e(ßpx3,x) = Yl
u

d2V    dT dT

dq'dqJdpdp7

In general, 6(ßx) is given by a sum with as many summation indices as edges

are in the graph. To each edge there corresponds a summation index. A white

(resp. black) vertex entered by r edges 7,7,... contributes with a factor

drV/dq'dqJ ■■■ (resp. d'T/dp1 dpJ ■■■). Finally, the sum should be taken
with a plus (resp. minus) sign if the number of white vertices is odd (resp.

even).

After this preparation we are ready for the proof. Again we consider the

graph in Figure 3, but now we ignore the root and label the edges rather than

the vertices (see Figure 4). The corresponding Hamiltonian is

77 = q xq4q1 + q2 + q3 + <?V +pxp2p3 + p4p5 + p6 + p1.

There are as many terms as vertices. A white (resp. black) vertex entered by

the edges labelled 7,7,... contributes with a term q'qJ ■ ■ • (resp. p'pJ ■■■).

In order to verify that H does in fact meet the requirements, one follows a

recursive procedure similar to that used in the proof of Theorem 4.2.   G

Remark 4.2. Once more, it is useful to look at the situation where (1.7) reduces

to a single RK method (1.2). For trees ßx that are their own photographic

negative, the bracket in (4.8) vanishes: each term in the sum for white roots

is cancelled by a term in the sum for black roots. Next consider a tree ßx

with photographic negative ßx' ^ ßx. If ßpx e ßx has white root and photo-

graphic negative ßpx', then a(ßpx)y(ßpx)Q>(ßpx) = a(ßpx')y(ßpx')<f>(ßpx').

Thus we can group together the contributions of ßpx and ßpx' to (4.8). The
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combined contribution is easily seen to be

(4.9) a(ßpx)y(ßpx)<t>(ßpx)[6(ßx) - d(ßx')].

By carrying out a similar pairing in all terms, we recover, for the particular case

of separable Hamiltonians, formula (7.7) of [12]. The expression in brackets

in (4.9) is what in [12] was called an elementary canonical differential. The 6

notation used in this paper is slightly different from that used in [12].

5. Necessary conditions for canonicity

In this section we study whether (2.3) is necessary for canonicity. In general

it is not: Each of the methods

(5.1)

and

(5.2)

satisfies (2.3) and is canonical. One step of length A of the method

(5.3)

0

1/2
[1/2

0

1/2
1/2

1/2
1/2
1/2

0
0

1/2

is just a step of length A/2 of (5.1) followed by a step of length A/2 of (5.2).
Hence, (5.3) is also canonical. Now, for (5.3), Zi = Z2 and hence (5.3) gives

the same results as

(5.4)

0       0

1/2    1/2
1/2    1/2

1/2      0
1/2      0
X     X-X

where X is any real number. Thus (5.4) is canonical. However it does not satisfy

(2.3) if X ̂  1/2. This shows that, if one deals with methods for which two of
the stages are equivalent, then canonicity does not imply (2.3). In the remainder

of the section we focus our attention on PRK methods without equivalent stages.

For standard RK methods (1.2), the notion of equivalent stages is carefully

studied in [2, §383]. This material can easily been extended to the case of PRK
methods; full details will not be given here. It is sufficient to mention that two

stages Y, and Y7 (or Zk and Z¡) of the method (1.7) are said to be equivalent

if, to each smooth problem (3.1) and each initial point (p, q) there corresponds

a value An such that Y, = Yy (or Z, = Zf), for A < Ao. The equivalence of

two stages can be characterized either in terms of stage elementary weights or in

terms of the Butcher tableaux (1.7) (see [2, §383]). The following result holds.

Lemma 5.1. Assume that the PRK method (1.7) has no pair of equivalent stages.

Then, there exists a fê00 separable Hamiltonian, defined in the whole of ¿%w

and with bounded partial derivatives of all orders, such that, at p = q = 0, for

all sufficiently small A > 0 and all i, j, i ^ j,

Y, # Yj     and    Z, ¿ Z¡.

Proof. By characterizing the equivalence of stages in terms of stage elementary

weights, as in [2, Theorem 383B], we see that there is a white-rooted bicolor
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rooted tree for which the elementary weights of the first and second stages are

different. We use Theorem 4.1 and Remark 4.1 to construct a 8"30 separable

Hamiltonian with bounded derivatives for which, for A small and at the origin
in phase space, Y] ^ Y2 (cf. the proof of Lemma 383A in [2]). In a like
manner one can construct Hamiltonians that make Zi ^ Z2 , Yi / Y3, etc. By

juxtaposing all the corresponding Hamiltonian systems, we find a Hamiltonian

system for which all Y-stages are pairwise different and all Z-stages are also

pairwise different.   □

In the remainder of the section, we look at the class ^°° of all ^°° separable
Hamiltonian functions 77 defined in the whole of T%2N, with bounded partial

derivatives of all orders. The corresponding differential systems satisfy a global

Lipschitz condition. Hence, given a PRK method (1.7) and 77 € ^°° , there is

a constant a , depending only on the method and on the number of degrees of

freedom N, such that, if A denotes the lowest upper bound of the modulus

of the second partial derivatives of H, then the equations (1.5) have a unique
solution for

(5.5) AA<(7.

It follows that, in these circumstances, (p, q) •-> (p*, q*) is a well-defined

smooth transformation T7~H h in T%2N. The main result in this section is the

following theorem.

Theorem 5.1. If, for a given PRK method without equivalent stages, ^h ,h is a

canonical transformation for each 77 e X°° and each A satisfying (5.5), then

(2.3) holds.

Proof. Our technique of proof is similar to that used by Lasagni for the case of

standard RK methods (1.2) and general Hamiltonian problems. (It should be
mentioned that Lasagni's proof does not appear in the published note [6] and

is known to us through a kind personal communication.)

We begin by applying Lemma 5.1 to construct an JV-degrees of freedom

separable Hamiltonian 77n = To + Vo e ß?°° such that, for A small and initial

value (0,0), the stages are pairwise different. Next, for X < i < s, let Mr,,- =

[tjJ] and Myj = [vjJ] be N x N real symmetric matrices with

(5.6) \t\J\<X,     |v,/y|<l, 1 <i<s,   X <I,J< N.

We consider the quadratic Hamiltonian functions

r,(p) + F,(q),

To + ~(V - Y,) + ¿(p - Y,)rMr,,(p - Y.),

Vo + ̂ (q - Zf) + i(q - ZifMvM ~ ZO >

where To, dT0/dp are evaluated at Y,, and V0, dV0/dq are evaluated at

Z,. Thus, in the neighborhood of (Y,, Z,), 77,, X < i < s, and 770 differ
in quadratic terms. Note that 77, depends on A through Y, and Z,, but

this dependence is not reflected in the notation. Finally, let q> be a fê00 real

function defined in ¿%N which is = 1 in a neighborhood of the origin and = 0

(5.7)

77,-(p,q) =

7/(P) =

Vt(q) =
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outside a second, larger neighborhood of the origin, and set, for 0 < e < 1,

77(p,q)=     l-¿p(e-i(p-Y,))    r0(p)+ £>(£-'(?-Y,))r,(p)

(5.8)
i=i 1=1

+    l-^ye-^q-Zi)) )V0(q) + Yl9(e-l{q-Zi))Vi{qL).
i=i i=i

Clearly, the function in (5.8) is in ^°° . Let us now determine, for A small,

e = e(h) small enough to ensure that 77 = 77, in a neighborhood of (Y,, Z,),

1 < i < s ; this is possible because the points Y, are pairwise different and the

same is true for the points Z,. Then, let us reduce the value of A for (5.5) to

hold. This is possible because, as e —► 0, the second derivatives of 77 can be
proved to remain bounded. (For instance, when forming the matrix of second

derivatives of (5.8), one gets the term e~2D2tp(e~x(p- Y,))[r,- To]. According

to a previous remark, the term in brackets is of the order of e2 and this offsets

the effect of the factor e-2 .) By assumption, for 77 in (5.8) and the value of

A we have found, (2.1) holds. Therefore, the second sum in (2.2) vanishes (the

first sum is 0, because 77 is separable). In order to evaluate this second sum, it

is sufficient to observe that the PRK stages for the systems with Hamiltonians

77 and 77o are the same, because of the unicity of the solution of the implicit

equations guaranteed by (5.5). We can then write

0 = £(M¿, + Bjdji - biBj)dki A d\j
i,j

= J2Y, ^A-J + BJ*Ji - biBj)v¡'JtIj'KdqJ A dp*,
i,j I,J,K

and the independence of dqJ A dpK ensures that, for each J and K,

£(M,7 + Bjaji - biBj)v\'JtIj'K = 0.
i,j

Since vj' and r,' are arbitrary, subject to (5.6), we have proved that (2.3)

must hold.   □

6. A NUMERICAL ILLUSTRATION

As mentioned in the introduction, the main potential advantage of canonical

PRK methods over canonical RK methods is that the former may be explicit.

In fact, Ruth [8] considered methods of the form

(6.1)

Cx

C\

Cx

Cx

C\

0
c2

c2

c2

c2

0
0
C3

Ci

c%

0
0
0

Cs

Cs

0

dx
dx

dx
Vdx

0
0
d2

d2

d2

0
0
0

¿
di

0
0
o

o
d.

These satisfy (2.3) and are effectively explicit for partitioned problems of the
form (3.1). (The equation Yi = p +Aciki has not to be solved for Yj because

ki depends only on Zj, etc.) In [8], Ruth studies the cases 5=1,2,3.
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When 5 = 3 there are six parameters c, and d¡ and, since (2.3) holds, five

equations are required to achieve order 3. This leaves a one-parameter family of

three-stage, third-order methods of the form (6.1). The family may be described
as follows. We consider in the (dx, iJ^-plane the cubic curve

(6.2) X2dxd2(dx + d2) - %d\ + 3dxd2 + d\) + X2(dx +d2)-4 = 0.

Note that for a given value of dx, there are zero, one or two (real) points

(dx, d2) on (6.2), whose d2 coordinate can be found by solving a quadratic

equation. Then, to each (real) point on the curve (6.2), there corresponds a

method with

(6.3)
Cx =

3dx +3d2-2

6dxd2

Cx = X-c2-Ci,

C3 =
-3dx + 2

6d2(dx + d2) '

¿?3 = 1 — dx — d2.

In [11], one of the present authors suggested to use in (6.2) the value dx =

0.91966152 (a root of 12z4 - 24z2 + 16z - 3 = 0). For this choice one gets

the symmetry c, = i/4_,, ¿=1,2,3.
If we take a step of length A/2 with (6.1), followed by a step of length A/2

of the adjoint method of (6.1) (see [5, §11.8]), we obtain an explicit method

with 25 stages, which is also canonical, because the inverse of a canonical

transformation is canonical (cf. method (5.2) above). In the case 5 = 3 the

resulting tableaux are

(6.4)

cx/2      0        0
ci/2 c2/2      0
ci/2 c2/2 c3/2

Ci/2 c2/2 c3/2

0 0
0 0
0 0
0 0

cx/2    c2/2    cj/2    c3/2      0

cx/2    c2/2    Ci/2    C3/2 c2/2

Ci/2    c2/2    C3/2    C3/2    c2/2    e/2

0         0         0         0         0 0

¿1/2     0        0        0        0 0
di/2 d2/2       0         0         0 0
¿1/2 d2/2 d3/2 i/3/2       0 0

¿1/2 d2/2 di/2 di/2 d2/2 0
di/2 d2/2 di/2 di/2 d2/2 di/2
di/2 d2/2 di/2 di/2 d2/2 d\/2

If we start with a three-stage, third-order method (6.1)—(6.3), then (6.4) has

order four. This comes about because, on the one hand, (6.4), being a com-

position of order-3 methods, has at least order three, and, on the other hand,

the order of (6.4) is even, as the method is its own adjoint. Even though (6.4)

has six stages, it only requires five evaluations of f and g per step. To see

this, it is enough to realize that in (6.4) (i) the stage Y4 duplicates the stage

Y3, which saves a g evaluation, and (ii) the f evaluation at Z^ in the current

stage provides the first evaluation of f to be used at the next step. We have

thus constructed a one-parameter family of fourth-order, five evaluation per

step, explicit canonical integrators (6.2)-(6.4). We employ the member of this

family corresponding to the value of the free parameter dx given above.
We now present a simple numerical example. We emphasize that our pur-

pose here is to illustrate the scope of symplectic integrators, rather than to offer

definite conclusions as to the relative merits of symplectic methods when com-

pared with their standard, nonsymplectic counterparts. The reader is referred

to [3] for more serious numerical comparisons using variable-step software.
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We consider the well-known Kepler problem, given by N = 2, T =

ÜP1)2 + (p2)2)/2, V = -X/^/((ql)2 + (q2)2), with initial condition

Pl=°>    P2 = ][j^^    «l = l-e'    «2 = 0-

Here e, the eccentricity of the orbit, is a parameter that in the experiments

is given the value 0.3. The solution is 27t-periodic. The problem is integrated

for 10,000 complete periods and the errors are measured at the final time in

the Euclidean norm of ¿ft4 . We have employed the symplectic PRK described

above with stepsizes 2^/128, 2n/256, 2n/5\2, 27t/1024 and, as a refer-
ence algorithm, the classical fourth-order RK method. The latter was run with

smaller stepsizes: 2^/160, 27t/320, 2^/640, 2^/1280; this choice makes up
for the fact that the reference algorithm uses four function evaluations per step

and the symplectic algorithm requires five function evaluations per step. The

results given in Table 2 clearly show the advantages of the symplectic algorithm.

Table 2

Classical RK Symplectic

Function Evaluations_A_Error_A_Error

6,400,000 2&/160     ********   2ti/128     0.43£ - 02
12,800,000 27T/320     0.54£ + 00    2tt/256     0.27£ - 03

25,600,000 27T/640     0.17E-01    2tt/512     0.17£-04

51,200,000 27T/1280   0.53£-03    2k/1024   0.11£-05

7. Conclusions

We have considered PRK methods, i.e., methods where the Runge-Kutta

formula is used to integrate some components of the solution and a differ-

ent Runge-Kutta formula is used to integrate the remaining components. For

PRK schemes without redundant stages, we have given a necessary and suffi-

cient condition that the coefficients should satisfy for the method to be sym-

plectic when applied to Hamiltonian problems with a separable Hamiltonian

77 = r(p) + V(q). It has been shown how to write the order conditions for

symplectic PRK methods. These conditions are a subset of the order conditions

for general PRK methods. An explicit, 4th-order, symplectic PRK formula has

been constructed. A simple numerical example has clearly shown the potential

advantages of symplectic integrators.
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