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Fourier Techniques in Numerical Methods
for Evolutionary Problems

J.M.Sanz-Serna

Departamento de Matematica Aplicada y Computacion,
Facultad de Ciencias, Universidad de Valladolid,
Valladolid, Spain

1. Introduction

1.1 Scope

These lecture notes contain a summary of the application of Fourier analysis
to the numerical solution of time-dependent partial differential equations. The
presentation emphasizes two topics: how to use Fourier techniques to analyze
and understand finite-difference and finite-element methods and how to derive
and code pseudospectral Fourier numerical methods.

The first topic is essential for anyone who wishes to use numerical methods in
partial differential equations. While the Von Neumann stability analysis is found
in virtually all introductions to the subject, many textbooks do not discuss the
ideas of stability and consistency from the Fourier space point of view. Similarly,
most elementary texts do not provide an adequate coverage of the notions of
numerical dispersion and numerical dissipation. 1 have tried to fill these gaps.

Pseudospectral methods, our second main topic, are very useful when sim-
ulating partial differential equations arising in physics. These methods, being
younger than finite-difference/finite-element methods, are not as widely known
as they deserve. It is sad that many published papers report finite-difference
simulations in situations where a pseudospectral method would have been far
more efficient and not more difficult to code.

In order to cater for as wide an audience as possible, virtually no previous
knowledge on Fourier analysis or numerical methods has been assumed. The
text has been supplemented with exercises and anyone who is really interested
in the subject should try and solve most of them. Many exercises contain useful
material not covered in the main text. Sometimes the exercises ask for a computer
program to be written and MATLAB is an ideal environment for those programs.
To help the reader, we have used throughout a set of mathematical conventions
that follow those used in MATLAB.

There are eight sections. Sects. 6-8 are devoted to Fourier analysis of finite-
difference schemes and Sect. 9 to the pseudospectral method. The first four
sections are introductory and serve as a foundation for the last four. Sect. 2 con-
tains a short summary of Fourier series and Sect. 3 deals with partial differential
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equations. Discrete Fourier analysis, including the Fast Fourier Transform algo-
rithm, is the subject of Sect. 4. I have devoted a full section (Sect. 5) to carefully
discussing the relations between Fourier series and discrete Fourier analysis, a
point where many expositions are perhaps too terse.

In view of the number of available pages, some important topics have not
been covered. Broadly speaking, I only consider problems in one space dimen-
sion under periodic solutions. Multidimensional periodic problems can of course
be dealt with by Fourier techniques; the adjustments to be made to the material
here are minor. On the other hand, problems in the whole space are treated by
Fourier integrals rather than by Fourier series; the change from Fourier series
to Fourier integrals is sometimes a delicate business (for example, the effects
of sampling become more subtle). Homogeneous Dirichlet boundary conditions
(vanishing function) or homogeneous Neumann boundary conditions (vanishing
normal derivative) on an interval 0 < z < L (or on its multidimensional equiv-
alent 0 < z, < L, where n numbers the space variables) are also amenable to
Fourier techniques; they require sine ot cosine series, which also have a discrete
version with a fast implementation.

1.2 Some mathematical preliminaries

It is convenient to list here some basic linear algebra results (Golub and Van
Loan 1989; Horn and Johnson 1985) that will be used later. The reader should
skip this section now and return to it when referred from other sections.

The norm or length of a real or complex vector X = (Xi,-..,X,) with v
entries is given by |X| = (3, [Xn|?)1/2. The norm of a v x v real or complex
matrix A is defined by ||Al| = max{]AX|/|X]: X # 0}. It follows that |AX]| <
[1A{l 1X], for each v x v matrix A and v-vector X, while ||AB]] < IANIBY if A
and B are v x v matrices. .

MfAka real or complex sqiare matrix, p(A), the spectral radius of A, is the
" ‘maximum modulus of the eigenvalues of A. Smce the eigenvalues of a power A™
are the powers of the eigenvalues of A, it holds that p(A™) = p(A)™. For each
square matrix p(A) < [|All. On the other hand, [|A]| may be computed by the
formula ||A|| = p(A* A)/2, where A*, the adjoint of A, is the conjugate of the
. transposed of A. The spectral abscissa, a(A), of A is the maximum real part of
- the eigenvalues of A. e T T

_A unitary matriz is a matrix @ for which Q" = Q-'. Unitary matrices
presérve vector norms, |QX] = IX], and, by the definition of [|Q]|, this implies
that ||Q}| = 1. Furthermore, unitary matrices preserve matrix norms, in the sense
that for unitary @ and arbitrary square A, QAN = 1AQl = lAll.

A normal matrix is a matrix that commutes with its adjoint A*, i.e,
AA* = A*A. Unitary matrices, real symmetric matrices and real skew-symmetric
matrices are obviously normal. A matrix is normal if and only if there exists a
unitary matrix @ so that @*AQ is the diagonal matrix A of the eigenvalues A,
of A. Since multiplication by unitary matrices does not change matrix norms,
for a normal matrix ||Al} = [JAl} and therefore [1All = maxn {Aa] = p(A). From
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here, if A is normal, JA™ (| = [|A|I™. (For nonnormal matrices, p(A) < JJAl} and
1A} < BAlI™)

The exponential of a square matrix A is, by definition, exp(4) = I+
A+ (1/2)A% + ---. It holds that exp(A)~! = exp(—A). Also (d/dt)exp(tA) =
Aexp(tA),if t is a real variable. Then exp(tA)X? is the solution of the differential
system (d/dt)X(t) = AX(1) with initial condition X(0) = X°. The eigenvalues
of exp(A) are the numbers exp()), with A an eigenvalue of A. If A is normal,
then exp(A) is also normal and therefore || exp(A)ll = pexp(A)). It then follows
trivially (the modulus of the complex exponential is the exponential of the real
part) that, if A is normal, then [lexp(A)|l = exp(a(A)). For nonnormal matrices
exp(a(A)) may be smaller than H exp(Al-

If P(z) is a complex polynomial and A is a matrix, the matrix P(A) is defined
in an obvious way. For instance, if P(z) = 3+2z+ 22, then P(A) = 31424 +A?,
with I the identity matrix. A rational function R(z) of the complex variable z
is the quotient of two complex polynomials R(z) = P(2)/Q(z). If A is a square
matrix and R(z) is a rational function, then R(A) is, by definition, the matrix
P(A)Q(A)™! (or Q(A)~"' P(A), because P(A) and Q(A)™! commnute). Note that
R(A) can only be defined when Q(A) is an invertible matrix. For instance, R(z) =
(1+2/2)/(1—z/2) is a rational function and R(A) = [I +(1/2)A)ll - (1/2)A "
this is defined if 2 is not amongst the eigenvalues of A. The eigenvalues of R(A)
are R(X), with X an eigenvalue of A. If A is normal, then R(A) is normal and
therefore [|R(A)|| = p(R(A)) is given by the maximum modulus of R(X) as A

runs through all the eigenvalues of A.

2. Review of Fourier Series

2.1 The £? theory

The literature on Fourier series is of course huge; we ouly consider the £? theory

(Strang 1986).

For a given, fixed L > 0, we deal with complex-valued functions f(z) of a
real variable z, —00 < = < 00, that are L-periodic, f(z) = f(z + L). The space
£2[0, L} consists of all L-periodic functions f for which the quantity

1/2

L
I = \ \f(2)[? d= | (2.1)

is finite. For instance, if = represents time and f is the value of a periodic electric
current, then the square of the right-hand side of (2.1) is (proportional to) the
energy dissipated in a resistor during a period; £2[0, L] contains all current
functions with finite energy per period.

It is convenient to imagine that each f in £%[0, L] is a ‘vector’ in a space with
infinitely many dimensions and that ||f[| is the norm or length of such a vector.

For f, g n hmﬁo,s,
L
(fig) = | f(z)g(z)" dx
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(+ denotes complex conjugate) is the inner product of f and g. If {(f.g) =0
we say that f and ¢ are orthogonal; we imagine that the vectors f and g are

perpendicular.

The system of (L-periodic) functions . b 2,1, b0, 8162, - where

&IAHV = exp .NsN:H ’ n= Ogn»u—qnWM.. R Awwv

are pairwise orthogonal, (¢n,dm) =0, 1 # m. Just as each geometric vector v
in ordinary three-dimensional space can be written in the form

v = c_n. + cN.u. + cuﬁn Awwv

in terms of a system {1, 7,k} of pairwise perpendicular unit vectors, each f in
£%{0, L] can be referred to the system (2.2):

.\H M .W:Q:. ANAV

with L .
: 1 1 .
fom Ll = 1 [ f@6n(a) e, n=0ELE2 L 29)
0
The series in (2.4) is the Fourter series of f; we use the notation
2 ~
Pu(f)= 3 fadny N =012, (2.6)
n=-~N

for the corresponding truncations. Each term fan,n=0,+1,£2,. . .in (24) is
said to be ¢ Fourier mode of f.
The following properties are crucial.

1..For each f in L£2]0, L], (2.4) converges to. f in the sense that,"as N — oo,

NIf = Pn(H)I] — 0. This does not imply that, when the right-hand side of (2.4)

is evaluated at a point z, the resulting series of complex numbers converges

to the value f(z) (pointwise convergence). In the electric current example,

the current f is approximated by Pn(f) in such a way that the energy in

. the residual f — Pn(f) can be made arbitrartly small by taking N suitably

" large; this does not imply that at a given time z the value of f(z) is the

 limit,-as N < oo, of the values (Pn(f))(z). - . :

2. For each f in L2[0,L], the sequence of Fourier coeflicients .w: Is square

summable,ie, Y cncoo _\na_N < oo. Conversely, each square summable se-

quence of complex numbers corresponds to the Fourier coefficients of a func-

tion in £2[0, L]. Thus the Fourier series defines a correspondence between

functions f and sequences of coefficients szf just as (2.3) provides a cor-

respondence between ordinary vectors v and sets of coefficients (vy,v2, va):

the idea is to use the coefficients f, instead of the function f. Furthermore
Parseval’s identity holds:
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oo

M =L ) il @7

—00

This is analogous to |02 = v} + v + v} in (2.3).
3. If fis in £2[0, L), then Py(f) is, among all the linear combinations of the

form
N

Sv=Y. gndn, (2.8)

n=—N

(the gn’s are arbitrary complex numbers) the one that makes ||f — Swl|
as small as possible. Functious of the form (2.8) are called trigonemetric
polynomials of degree N.

Exercise 1 Prove that the functions in (2.2) are pairwise orthogonal. Prove
that each ¢, has length VL. so that the functions &, = &:\,\N are pairwise
orthogonal and have unit length. Substitute ¢, = VLP, in (24) to get f =
Y Fod,, with F; = (f,®,). This is directly analogous to the familiar formulae
v = (v,8), v2 = (v,3), v3 = (v,k) for the coefficients in (2.3). In terms of
the F,.’s, (2.7) becomes || f||? = 3 |Ful?, a formula to be compared with |v]? =
v2 +v3 4 v3. Thus the @, s lead to formulae that are simpler to remember; some
authors prefer to use it instead of the ¢n’s in (2.2).

Exercise 2 Show that, with the definitions in (2.5) and (2.6), the coefficients fa
are such that (f,8,) = (Pn(f),éa), n =0,%£1,...,2N. Denote by Xy the set
of trigonometric polynomials (2.8} and prove that Pn(f) is the unique element
in Xy for which f — Py(f) is orthogonal to all functions in Xn. Thus Pn(f)is
the orthogonal projection of f onto Xn. This explains Property 3 above.

Exercise 3 Consider the L-periodic square wave function f(z) = L if 0 <z <
L/2, f(z) = —1,if L/2 < = < L. Show that f, = —2i/(wn) for n odd and f, =0
for n even.

Exercise 4 Consider the L-periodic saw-tooth function f(z) = «,if 0 <z < L/2,
flz)=L—=z.if L/2 < z < L. Show that fo = L/4, fo = —L/(7n)?, for n odd,
and f, = 0, for n # 0 even,

2.2 The trigonometric version

It is sometimes useful to write ¢, in trigonometric form

2 2
¢n(x) = cos Iwhu, + isin %H“
substitution in (2.4) leads to the following trigonometric form of the Fourier

series



150 J.M.Sanz-Serna

o 2wn . 2mn
.\.anC‘V.TM nzﬁbncmlh!H+m:A3m_= MH , (2.9)

n=1

with

co(f) = Jo,
cn(f) = fotfon, n=12
su(f) = ilfu— fon)y n=1200
Using (2.5), one arrives at the following formulae that allow the computation of

cnl(f), sn(f) without using the fo's:

L
co(f) = W\o f(z)dz, (2.10)

L .

g 27n

«.:A.DHN f(x)cos ™ oede, n=1,2,...,
LJy L
2
L

L 2nn

sn(f) = Naavm._:‘ﬂl.._i&. n=12,.
0 f
The form (2.9) has the advantage that, if f is real-valued, then cn(f) and
5, (f) are real; the coefficients f, are complex even if f is real.
In (2.9), f is decomposed into a constant co(f) (which coincides with the
average of f over one period, see (2.10)) and a sum of functions of the form

(cn = cn(f), sn = 5a(f))

2mn + . 27 n 19
5 —— spsin —z, n=172.
cn COS —F z -
Assume for a moment that f (and hence ¢, and s, ) are real. Then
2 .2 2
Cn COS w=s+m=m_= IW_HHH Ap cos IMH.AIQ: , (2.11)

where A, = \/c2 + 52, ¥n = arctan(sp/cn ). so that cn = A, costpp and sp =
A, sin ¥,. Thus, the function in (2.11), the n-th harmonic of f, n = 1,2,..,
corresponds to a sinusoidal profile, whose amplitude A,, and initial phase —¥,
" are determined -hy _the Fourier coefficients. c, and sn. The (smallest or basic)
-~ “period of (2:117 as a function of = is L/n so that one period 0 < z < L of
_f is covered by n. cycles of the sinusoid (2.11). Note that in the trigonometric
format Amcvﬂ n is nonnegative; both the coefficients fn and f_n contribute to the
harmonic with period L/n,n =1,2,.... If f is not real-valued this interpretation
can be applied to its real and imaginary parts.
The form (2.4) is easier to handle mathernatically. The trigonometric form
possesses more meaning. .

Exercise 5 Prove that if f is odd, f(z) = —f(—=), then c,(f) = 0, n =
0,1,2,... . Prove that if f is even, f(z) = f(—x), then so(f)=0,n=12,...

Prove the converse of these results.
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Exercise 6 If all you know of f are the coefficients .s,?.—_oi would you tell
whether f is real-valued? How would you tell whether f is even, odd?

2.3 Fourier series and derivatives

We denote by 8, the operator of differentiation with respect to z. The system
(2.2) is more advantageous than other orthogonal systems because each ¢, is an
eigenfunction of the operator 8;:

Oubp = Andn, Ao = 2rni/L. (2.12)

On &, differentiation reduces to multiplication by the eigenvalue A,. Hence,
from (2.4),

0o
3:f =Y, (Anfa)dn.
n=—0o0
From Property 2 in Sect. 2.1, we see that 8. f exists and belongs to £*o,L]
if and only if M,_\/:_N_sﬂz_N < 00, le., Mam_w:_u < oo. For the square wave in
Exercise 3. n?|fnl? = 4/7? and the series diverges: f has jump discontinuities
at ¢ = 0,+L/2,+L,... and correspondingly 9: f has delta functions at those
points; d; f is not in £2[0, L}. For the saw-tooth function in Exercise 4, :w_.\,a_...
4/(x*n?), which leads to a convergent series and to 8, f in £2[0, L}. In fact, 8: f
is the square wave function.
For higher derivatives, k= 1,2,..,

f =Y (Aifo)dn,
n=-00

and therefore F f exists and belongs to £?[0, L] if and only if the Fourier coef-
ficients f. of f decay as |n| — oo fast enough for the series vU:EQ_.w:_Nv to be
finite. Smooth functions have Fourier coeflicients that decrease fast or, in other
words, the smoother the function the poorer in harmonics with large n. This is
intuitive. The function ¢, varies from ¢, = 1 to ¢ = —1 in an z-interval,
0<z< L/(2|n]), whose length is small for |n| large; therefore large coefficients
|fa| for large |n| in (2.4) lead to sharp variations in f.

There is another interesting implication. By Parseval’s identity (2.7) applied
to the function f — Pn(f),

1F=Pu(OIP=L Y 1l

Inj>N

smooth f corresponds to quickly decreasing .m: and hence to small lengths of
the residuals f — Py(f): the smoother the function, the faster the Fourier series
converges. See Figs. 1 and 2.
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Fig. 1. The square wave function {Exercise 3) and the truncation Pya of its Fourier

series

33

It 4
25} B
2k i
Lst :
1} ]
os} 4
% 1 2 3 ] s 6

Fig. 2. The saw-tooth function (Exercise 4) and the truncation Ps of its Fourier series.
_Compare.with Fig. 1: here fewer harmonics give a better approximation
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Exercise 7 Prove that if f has derivatives of all orders in £2[0, L], then its Fourier

coefficients decrease faster than any power of In], ie., for each k = 1,2,...,

In[*|fal = 0 as |n] — oo.

Exercise 8 Prove that the Fourier coefficients of AquE.ao et al. 1988) 3/(5 —
4cosz) are 2-171 (you may compute the needed integrals by the residue theorem
of complex variables). Thus the Fourier coefficients decrease exponentially as

|n| — oo.
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Exercise 9 For the function in Exercise 3, write a program that draws the graphs
of f and Px(f). (Use the trigonometric format to avoid complex quantities.) Run
this program for several values of N. Do the same for the functions in Exercise
4 and Exercise 8. What are your conclusions?

3. Fourier Analysis of Initial Value Problems
3.1 Formal solution

Let P(z) =ap+ayz+ ...+ a4z% be a polynomial with complex coefficients. We
consider the following periodic initial value problem. We wish to find a complex-
valued function u = u(z,t), —oo < z < 00, t 20, L-periodic in z, that satisfies
the differential equation

deu(z,t) = P(3z)u(z,t), —00 <z <00, t>0, 3.1
along with the initial .no:&:o:
u(z,0) = u’(z), —oo0 <z <00, (32)

where u® is a given function in C2[0, L}. For P(z) = az?, a a positive constant,
we have P(0;) = ad? and (3.1) is the hea! equation fiu = azzu with diffusivity

constant a. The choice P(z) = —cz, c real, leads to the advection equation Oiu =
—cBgu; for P(z) = iz?, we have the Schroedinger equation in nondimensional
units d,u = 10, u (or i0u = —0g-u), etc.

The problem (3.1)-(3.2) is easily solved by Fourier series (Strang 1986). The
én’s are eigenfunctions of 8; (see (2.12)) and hence eigenfunctions of the operator

P(3,) in (3.1):
P(0:)¢na

Anc + n-@«. + ...+ Q&%Mv&:
(a0 + @y 2n + - .- + aa))dn = P(An)dn.

It is convenient to introduce the notation

Hn = ﬁc:;
for the eigenvalues of P(J;). For each fixed value of t, the solution u(z,t) of
(3.1)-(3.2) is sought as a Fourier series

oo

u(z,t) = Y a(t)éa(z), (3.3)

n=-—oc

i.e., as a superposition of eigenfunclions. Substitution of (3.3) in (3.1) yields

(e o]

Y Sinba(@) = D pain(n(z)

n=-—o0o n=—o0

or
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M&M@:QV = paita(t), n= 0,+1,£2,... . (3.4)

Thus the partial differential equation (3.1) for u is equivalent to the system of
infinitely many ordinary differential equations (3.4) for the Fourier coefficients.
This system is diagonal or uncoupled: the n-th equation only involves the n-
th coefficient iia(t). Diagonalization is of course what one looks for when using
eigenfunctions. In turn, (3.2) provides the initial values for (3.4),

an(0)=ad, n=0,%1,%2,.., (3.5)

where @0 are the Fourier coefficients of «°. From (3.4) and (35), wa(t) =

exp(pnt)iy and (3.3) reads

[s.2]

u(z,t) = MM oxitazzme:ﬁav. (3.6)

n-=—oo

Each term in this series is called a mode of the solution.

Exercise 10 Particularize (3.6) to the heat, advection and Schroedinger equations

mentioned above.

Exercise 11 Systems of ¥ equations with v unknown functions can be cast in
the format (3.1) by allowing u to be a vector with v components and letting the
coefficients a; of P(z) bevxv constant matrices (z remains a complex variable).
Write P(z) for the system

dw = ¢0zv, (3.7

Gyv = cOzw,

(¢ a positive constant). Prove that (3.6) remains valid for systems; ftn = P(An)
and exp{(pnt) are now v X v matrices (see Sect. 1.2) and @ a vector whose v
components are the Fourier coefficients of the components of u°. Particularize

(3.6) to the system (3.7).

Exercise 12 Prove that the wave equation 0¢( = ¢28.:( is equivalent to 3.7)
through the change of variables v = 8¢, w = cd:(. This illustrates the reformu-
-lation of equations involving Ok, k > 1, as systems of the first order in t (ie.,
_systems invelving only first derivatives with respect tq t). “The tesulting systems
.Ew% then vw solved as in Exercise 11.

3.2 Well-posed problems

The solution u = u(z,t) of (3.1)~(3.2) is a function of two arguments. These
arguments do not play a symmetric role; it Is convenient to introduce the notation
u(-,t) to refer to the function of the first argument obtained by giving the fixed
numerical value t to the second argument. If for each fixed t > 0, u(-,t) belongs
to £[0, L], then we may imagine that each u(-,1) is a vector in £%[0, L}; this

£ ]
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vector changes with { starting {rom the initial vector u® at t = 0. It is this
change that we wish to study.
A crucial quantity is given by (R denotes real part)

a=a(P(@;))= sup  Rpn,

—oco<noo

the spectral abscissa of the operator P(9:) (cf. Section 1.2). Two situations may

arise.

(i) o < oo. Then we use (2.7) in (3.6) to get, for £ > 0,

(e 0]
LY lexp(uat)linl”

n=—00

la )
L MU exp(2Rpnt) it I*

n=-—0o0

(- O

1l

00

< Le2ot MU _bw_u
or

flu(, Ol < e™ el (38)
Thus, if the initial datum u® is in £2[0, L], the solution u(-,t) remains in
£2[0, L] at all later times t > 0. Furthermore, for each fixed t > 0, the length
of the evolved vector u(-.t) can be bounded by a factor e** (independent
of u°) times the initial length |«0]]. Small u° lead to small solutions. The
problem is said to be well posed (Richtmyer and Morton 1967; Kreiss and
Oliger 1973; Sanz-Serna 1985; Sanz-Serna and Verwer 1989).

(i) a = oco. Then, for the initial condition u® = @,, with norm V'L, the solution
u(-,t) = exp(pnt)én hasa length V'L exp(Rpnt) that can be made arbitrarily
large by varying n. It is therefore impossible to bound flu(-, Ol by 2 u-
independent factor times [[u®)]. The problem is said to be ill posed. Initial
conditions close to 0 may result in arbitrarily large solutions. Such problems
are not good candidates to become physical models.

Exercise 13 Prove that the oa:w:ozm in Exercise 10 give rise to well-posed
initial value problems. How about the backward heat equation Gu = —afzzu, @
a positive constant?

Exercise 14 A system (cf. Exercise 11) leads toa well-posed initial value problem
if there exist constants K and o such that
sup  |lexp(pat)ll < Ke™, t>0.
—oo<n<oe
(Here ||-|| denotes norm for v x v matrices, see Sect. 1.2.) For well-posed systems,
derive an estimate similar to (3.8). Study the well-posedness of the initial value
problem for (3.7).
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3.3 Dissipation and dispersion

In this subsection we assume for simplicity that the initial datum u® in (3.2) is
real-valued and write it in trigonometric form as in (2.11),i.e.,

21n

=oAaVH>c+m>=aOm uﬂlalea .

We also assume that in (3.1) the variables z and ¢ correspond to physical space

and time.
Let us consider first the advection equation Jyu = —c8,u (c areal constant).

The solution (3.6) written in trigonometric form is

o 2 2mn
u(z,t) = Ao+ MJ\ Ap cos hMHH - INJR —tp |- (3.9)

n=1
Therefore u is a superposition of sinusoidal waves (Whitham 1974)

2mn 27n
Apcos | —T — ——cl—tYn ),

L L

(3.10)

each of these is constant on the lines in space-time with equations z — ¢t = £ €
a constant. In other words, (3.10) propagates with velocity ¢ without changing
shape. Since this holds for each n, the same is true for the sum in (3.9) and in
fact. u(z,t) = u®(z — ct), see Figs. 3-4.

Fig. 3. Initial condition (solid line) u®(z) = cos3z + cosds (L = 2m) obtained by
superposing the wave numbers 3 (dotted line) and 4 (dashed line)

In (3.10), ko = 27n/L is the wave number, i.e., the number of complete
cycles of the cosine function per 27 units of length, while wn, = 9nnc/L is the
(angular) frequency, i.e., the number of cosine cycles per 27 units of time. The
quotient wn/Kn = € provides the (phase) velocity of the wave. On the other
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Fig. 4. Solution u(-, t) at time ¢ = 1 of the advection equation deu = —cdyu, c =1, for
the initial condition in Fig. 3. Both harmouics have travelled one unit to the right

hand, ¢, = L/n is the wave length, (distance between two consecutive maxima
of the cosine function) and T, = L/(cn) is the period in time of the wave. Again
,/T. =c.

Let us now turn to the equation diu = Orzztl with solution

=] 9 3
u(z,t) H>Q+M>: cos ﬁal WMI:. t — Yn
:H~ ’

We are again superposing sinusoidal waves. But now the wave with wave number
Kk, = 2rn/L travels with a velocity (27n/L)? that is not the same for all wave
numbers. This behavior is known as dispersion. When dispersion is present the
‘shape’ of u(-,t) changes with ¢. This is illustrated in Fig. 5.

The equation w, = & relating frequency and wave number is known as the
dispersion relation of the equation (Whitham 1974).

Finally for the heat equation d; = adzu, a positive, the solution is

b 4nan?
u(z,t) = Ao + MU —\A: exp Ilﬂulla cos lhla —tn )
n=1

the sinusoidal components do not move with time; this is not a wave-like equa-
tion. It is the amplitude of the components that changes with t. The harmonics
decay, which physically would correspond to a dissipative behavior. Higher wave
numbers decay at a faster rate (see Fig. 6). A large diffusivity constant a results

in a faster decay.

Exercise 15 Write in trigonometric form the solutions of the initial value problem
for the equation Jyu = Orzu + O.z0ut. Study the well-posedness of the initial
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Fig. 5. Solution u(-,¢) at time ¢ = 0.1 of the equation diu = O.2-u for the initial
cordition in Fig. 3. The wave number 3 moves with velocity 9, so that the maximum
at £ = 0 is now at r = 0.9. The wave number 4 has velocity 16 and

that was initially
= se maxima are indicated by

the maximum initially at £ = 0 is now at £ = 1.6. (The
small circles.) Clearly the shape of the solution u(-,t) changes with t

0 1 2 3 4 s 6

m,mw. a. mﬁ.:?o: :A; 3“‘“ ”o.owoaprmrmwpmm—swsos9.“waaz_ —.o_.armw::ww_no:m?mo:
in Fig. 3 -~ . .. -

value problem and discuss the solution behavior, that combines dissipation and

dispersion.

Exercise 16 Write in trigonometric form the solutions of the initial value problem
for the equation dju = Orgu+au, aa real constant. Study the well-posedness of
the initial value problem. Discuss the solution behavior for different values of a.
Note that solution growth is compatible with well-posedness.

= b ————_t LR 8 o ot ot s
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4. Discrete Fourier Analysis
4.1 The discrete Fourier transform

The discrete Fourier transform (Strang 1986) is one of the inain tools of modern
appiied mathematics. For the time being, it is convenient not to think at all of
the discrete transform as a discrete version of the Fourier series; the relation
between discrete transforms and Fourier series is discussed in Sect. 5 below.

We work in the space €M of column vectors X with M complex components
X = _k?\?.i.kin__ﬂ.. note that subscripts run from 0 to M — 1, rather
than the standard 1 to M. The superscript T means transpose.

The (M-dimensional) discrete Fourier transform is the linear transformation
in €M that associates with each vector X the vector FuX, where Fiy is the
M x M complex matrix whose entry (¢, n),&n=0,1,..., M1, is %ﬁ. fn-th
power of the number

21 2 .2
wpy = exp l|>.Wm Hoaw.wlﬂ.m:_ww. 4.1)
For instance, for M = 2, w, = —1 and
0 0
_[wd w3} _ {1 1.
B = wd wh] |t 1]’

for M =3, w3 =—-1/2— m,\w\w and

wd w] w§ 1 1 1
Fa=|wd wl wif=|1 -1/2-i/3/2 ~1/2+4iV3/2];
wd wl wi 1 —1/2+iV3/2 —1/2-iV3/2

for M = 4, wqy = —1 and

wd wy w] w) 1 11 1

Fy = Sm SW .Em. Sm _ 1-—i -1 il
wi wy Wy Wy 1 -1 1 -1
wd wl w§ w) 1 i -1 -1

It is important to observe that SR =1, ie., wpy is an M-th root of 1. In
fact, wpy is the M-th root of unity whose argument is negative and as small as
possible.

The idea behind the use of the discrete transform is that many vector opera-
tions are easier if performed on the transformed vectors. One then (i) transforms
the data X, (ii) operates with the transformed Fa X to find the transformed of
the solution and (iii) transforms back to find the solution. The third step requires
the knowledge of the inverse matrix ﬁ\m_, which is really simple:

- 1 -
5._3_”@1%,3. (4.2)

Here Fay is the matrix obtained by conjugating all the entries of Fp. Since Fiar
and 3_1\ only differ in the factor M and in the change i — —1, the algorithms
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used to compute discrete transforms (see Sect. 4.3) are easily adapted to compute

inverse discrete transforms. B |
On the other hand, Fy = FJ; and hence (see Sect. 1.2) Fyy = Fp = MFy, .

If Y = FyX. then
Y2= Y'Y = (FuX)'Y = MX' Fy' Fy X = M|XJ%,

e M-1 p Mo
Xul? = — Yal%: 4.3
W_ | :,M”w_ _ (4.3)

this is a discrete version of Parseval’s identity (2.7). Except for the normalizing
factor M, Fy; is a unitary matrix and using Fp X instead of X does not alter
the length of the vectors involved.

Exercise 17 Write explicitly g and Fg. Use (4.2) to write explicitly Fy and Fit,
M =2.3,4.6.8. Have you observed that Fpy may be obtained by permuting the
columns of Fys? Check that Fy Fu_ yields the unit matrix.

Exercise 18 Two vectors X;, X» in €Y are said to be orthogonal if their
inner product X;X, vanishes. Show that the column vectors of Fa are pairwise
orthogonal. Show that the same is true for the column vectors of mﬁ-f

Exercise 19 Prove that Fp Fa = MI; this yields (4.2).

4.2 An application: systems of ordinary differential equations with
circulant matrices

Many situations give rise to systems of the form

d
—X(t) = AX(¢), (4.4)
di
with A a circulant constant complex matrix (Strang 1986)
dap a; a - aApM-1
L. . ap-1 ap a - aM-2
; .. = S ..‘..... ‘A= QE.IN ) ..ﬁng.la.. ap - .Dgl..w. S
PR R oy as .m.u do

It is fortunate that, for n = 0,1,..., M — 1, the n-th column of Fj;' (see (4.2))

i, exp (27%)
Ve=(my| W | = (M) (45)
~M~M.w~\|::
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is an eigenvector of A. More precisely

AV, =0, V., n=01,.M-1, (4.6)
with
_ n (M=) - _ 2mi
On = QoW + a1Wye + ...+ ap_1Wyy , Wp = exp )

We therefore look for the solution X(t) of (4.4) as a superposition of eigenveclors

M-
X(t)= Y Ya(t)Va, (4.7
n=0
(the Y,.(2) are complex numbers) or in matrix notation (a product matrix-times-
vector is the linear combination of the matrix columns whose coefficients are the
components of the vector)
X(t) = Fp' Y(2). (4.8)
The new vector Y = F X is therefore the transform of X. Substitution of (4.7)
in (4.4) leads, in view of (4.6), to

M-1 d M-1
M;Sf = ,.M.w oY, (t)V,,

n=0

MM.M\:ASHQ:S.QY n=01....M-1, (4.9)

in terms of the Y,’s the system has uncoupled or diagonalized and is easily
integrated:

Ya(t) = exp(ont)Ya(0), n=0,1,.., M —1. (4.10)
We conclude from (4.7) and (4.9) that the solution is
M-1
X(t) = Y exp(ot)Ya(0)Va. (4.11)
n=0

In practice, to find X(t) at any given numerical value of ¢, one computes Y (0)
by a discrete transform (see (4.8)), integrates in the Y, variables as in (4.10) and
returns to the X,, variables by performing the inverse discrete transform in (4.8)
at time 1. '

The reader has certainly noticed the similarity between this material and the
contents of Sect. 3.1; u(z,t) corresponds to X(t), P(9;) to A, the &,’s to the
Y.’s, (3.1) corresponds to (4.4), (3.3) to (4.7), (3.4) to (4.9) and (3.6) to (4.11).
At each fixed value of {, u(z,t) is parameterized by a continuum of values of r;
here X(t) is parametrized by the discrete subscript n = 0,1,..., M — 1. There
is a Fourier coefficient w, for each integer n, however there are only M variables
Y,. The basis functions @,, in (3.3) are pairwise orthogonal and so are the vectors
V. in (4.7), see Exercise 18.



162 J.M.Sanz-Serna

Other applications of the discrete Fourier transform involve the solution of
algebraic systems of linear equations, see Exercise 21, and the computation of

convolutions (Strang 1986).

Exercise 20 Prove (4.6).

Exercise 21 Solve the linear algebraic equations AX = B, where A is the
matrix in (4.4) and B a known vector. (Hint: If X = 3«.&% and B = Fj'C,
then Y, = Cp/on.n=0,1...., M —1.) Prove that to solve such a system one

needs one discrete transform, one inverse discrete transform and M divisions.
This idea can be extended to more general matrices (Strang 1986).

4.3 The fast Fourier transform
4.3.1 Preliminary remarks

Once F3y has been formed as in Sect. 4.1, to find FyX for a given vector X
requires M2 complex multiplications if one follows the standard recipe for ma-
trix/vector products (each entry in Fu has to be multiplied by an element of
X). In 1965 Cooley and Tukey popularized an algorithm, the Fast Fourier Trans-
form, FFT, that finds Fp X with less than (1/2)M log, M multiplications (the
exact number depends on the details of the specific implementation used). This
implies enormous savings. For M = 212 = 4096, a dimension that is typical in
many applications, M% = 2?4, and the FFT requires less than 6 x 2'2 multiplica-
tions: this means that FFT is at least 600 times faster. Since log, M grows very
slowly with M, the cost of the FFT grows for all practical purposes like O(M);
the straightforward matrix-times-vector algorithm has an O(M?) cost.

The idea behind the FFT is not difficult (Strang 1986). Suppose that M is
even M = 2N and we need to compute Y = FyX. We begin by splitting X into
two vectors of length N

X = ??Xf:;ki»&ﬁ, X" = MXTX?:;XEL_ﬂ

and computing two transforms
N T Y = FX, Y = FaX, (4.12)

whose dimension is only one half of that of the sought transform. We may
recover Y from Y’ and Y. In fact, it is straightforward to prove that the first
N components of Y are given by

Yo=Y +whY), n=01...,N-1, (4.13a)
while the N last components are given by

Yngn = Yo —wi Yy, n=20,1,...,N—L (4.13b)
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Note that (4.13a)-(4.13b) only require N multiplications wj, Y, This evaluation
of M-dimensional transforms in terms of N-dimensional transforms is the essence
of the FFT.

Even though in practice one implements directly (4.13), the idea above is
more easily grasped by rewriting (4.13) in matrix form. For instance, with M = 4,
N = 2, we have

Yo u\m

vi| Y/
v\w - za u\m\ 1

<u M\u\\

where

1 0 1 0
0 1 0 -t
Mi=11 0 -1 0
0 1 0 1

Therefore, by (4.12), (O3 denotes the 2 x 2 zero matrix)

B X' B 0] [X
Y = EA N.‘.NN: - >\\A QN ﬁau ). &
1 000
_ F, 0,110 01 0}
LSowao_oox,
0 0 01

the rightmost matrix, that we shall denote by Pi, permutes the entries of X =
_X?M?XE\/\&Q to give P4X = —ko_kuiﬁfku_%. To sum up

F; O,

NHA = Ea Qm Muu

Ps.

In the case M = 8, N = 4, the formulae (4.13) lead in the same way to

_ Fy Oy
Fg = Mg Os Fi Ps,
where

r 10 0 0 1 0 0 0 7

0 1 0 0 0 wg 0 0

0 0 1 0 0 0 wi 0

_ 0 0 0 1 0 0 0 wd

Ms=1 1 o o0 0 -1 0 0 0

0 1 0 0 0 —wsg 0 0

N 0 0 1 0 0 0 — wi 0
L 0 0 0 i 0 0 0 —w3 |

and P is the permutation matrix
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'

Py

—_o o000 o0

oo oo~
CcCoo ~0 2200
cooc o0 =20
comoo0O0O0O
SO0 ~Oo
o~ 00 DOO
CcCOoO0OoO=D OO
L

—

4.3.2 The algorithm

Assume now that M is a power of 2, M=2"pna positive integer. The idea just
described can be successively applied to reduce the computation of transforms of
dimension M to transforms of dimension M/2, M/4, M /8, etc. One goes all the
way down to 9_dimensional transforms that are, of course, trivially computed.
(A 2-transform requires just two additions.)

For instance, on combining the examples of Sect. 4.3.1, we get for M =8

Fs Oa
Y = RRX =M, PX
8 8lo, F 8
AN 04
= Ms e FoO PsX
Os4 My| 2 X Pa
0, F;
Nuw Qw Qm Qw
_ My O 0, Fy 0y O Py Os )
=Ms| o o, 0o B2 02|04 Pu Pe X
Qw Qm QN TJN
to find Y we successively ‘multiply’ X by Ps, ---, Ms. The first two products

require only permutations of the entries of X; the last two products implement
formulae (4.13) to find two 4-transforms and the sought 8-transform.

For other values of M = 2¥, the algorithm works in the same way. The matrix
Far. is thought.of as a product of (=1 +1+ (- 1) factors. The rightmost

g 17 factors destribe permutations of the entries of X. The-central factor is
the multiplication-free computation of 9_transforms. The left-most g — 1 factors
successively vield 22-transforms, 94_transforms, étc. ’

4.3.3 Practical issues

The FFT also works when M 1s not a power of 2 (Cooley and Tukey 1965). For
instance if M has a prime factor M, # 2, M = M M3, one can work out formulae
similar to (4.13) to reduce the computation of an M-transform to that of M
transforms of dimension M. Iteration of this idea reduces the computation of
transforms of arbitrary length to that of transforms whose size is a prime factor

|
|

;
;
!
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2, 3,5, .... However, in most implementations, the FFT is most efficient when
M is of the form 2* and one should try to use numbers of this form.

Note that FyX is a complex vector even if, as it is often the case in the
applications, X has real entries. The use of the fully complex FFT algorithm
described above is not optimal in terms of efficiency and improvements exist

. {Press et al. 1989).

All good mathematical software libraries possess implementations of the
FFT. These should always be preferred to ‘home made’ implementations written
by users. There is a lack of uniformity in the literature when it comes to defining
the matrices Fa and F-!- the definition used here has —i in Fa (see (4.1)) and
hence +i in Fgg' (see (4.2)), other authors take the signs differently. Here ﬁ@_
carries the factor M1 other authors attach this factor to the direct transform
Fpr. These variations should cause no problem.

Our definitions coincide with those in MATLAB. The MATLAB function
fit(X) finds the discrete transform of the vector X and ifft(X) provides the
inverse discrete transform. We note that, while mathematical notation has the
components of X labelled 0,1,..., M = 1, components in MATLAB run from
1 to M: the mathematical value X, should then be invoked in a program as
X(n+1)

Exercise 22 Write an FFT program. You can check what you write against a
coding from a textbook (Press et al. 1989).

Exercise 23 Prove that if the linear system in Exercise 21 is solved by discrete
Fourier transforms, the overall number of required multiplications and divisions
is less than M log, M + M. This should be compared with the O(M?) cost when
using Gaussian elimination {Golub and Van Loan 1989). Since, for realistic values
of M, log, M is a small number, the cost of computing the solution by Fourier
techniques is O(M) for all practical purposes. The cost of printing the solution
at the end of the ccmputation also grows like O(M)!

5. Discrete Fourier Transform vs. Fourier Series

5.1 A first look at aliasing

So far Fourier series, dealing with L-periodic functions of =, and Fourier trans-
forms, dealing with M-vectors, have been presented as unrelated entities. This
must now stop.

Let us again consider L-periodic complex-valued functions f as in Sects. 2—
3.1f M > 1 is an integer, we discretize the variable z by introducing the grid
points z, = ndzr, n = 0,+1,42,..., Az = L/M. In applications where the
variable z corresponds to physical time, we can think of the grid values f(zn) as
stroboscopic samples of f. Due to periodicity, f(zn) = f(zn)ifn—m differ by an
integer multiple of M. Hence only the points Zg, Z1,-- ., TM-1 carry independent
information. To each L-periodic function f we associate a vector X(f) in cM
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defined by [f(z0), f(z1),--- ,f(zm-1)]". Note that X(f) depends on M, ie., on
the particular grid chosen; for simplicity this dependence is not incorporated

into the notation.

Two different functions f,, f, may have X(fi) = X(f2); this happens if and
only if f; and f; coincide at all grid points. A prime example is given by the
Fourier basis functions ¢, in (2.2). For these,

exp Awaha.J
exp (5)
2%2n

X(ga) = | P ()

(5.1)

exp A?wiz;;:..v

and it is easy to check that

X(¢n) = X(ém)

where n = m means that n and m differ in an integer multiple of M. Hence,
on the grid, only ¢y, &1, ..., éar—y are different; dp coincides with @g. dary1
coincides with ¢, etc. Also, ¢_, coincides with ¢pr—1. d-2 coincides with ¢ar -2,
etc. This coincidence is called aliasing and plays a crucial role in discrete Fourier
analysis; when X(¢m) = X{(¢n) we say that ¢,, is an alias of ¢, (see Fig. 7).

& n=m, (5.2)

" Fig. 7. On the grid'resulting from dividing the interval {0, 2x] into M = 5 equal parts
(x signs) the function exp(8iz) is an alias of exp(3iz). This figure corresponds to the
real part; a similar figure may be drawn for the imaginary part

Exercise 24 Check (5.1) and (5.2).
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5.2 Trigonometric interpolation

5.2.1 The bad way

Let us now compare {(4.5) and (5.1):

V, = (1/M)X(4,), n=0.1.. M-1 (5.3)

This is an important relation between Fourier transforms and Fourier series: the
grid values X(¢,) of the Fourier series basis functions ¢, coincide, except for the
factor M, with the columns V, of the matrix 3@_. We use this coincidence to
solve an interpolation probleri. Assume that f is a given function and we wish

to find coefficients ag, ay, .. ..ap—; such that the trigonometric polynomial

M-
3" audn(z) (5.4)
n=0
matches f at the grid points. ie.,
M-t
\Aﬂiv“ MU DBQJAHS-V. QBHO<&H~‘H—HM.....
n=0
This condition may be rewritten as
M-1
X(f) =Y a.X(6n)
n=0

or, in view of (5.2) (see the remark before (4.8)),

M-1
X(fl=M Y aV.=MFy'a
n=0
Therefore
a= (1/M)FpuX(f), (5.5)
the a, are 1/M times the entries of the transform FyX(f) of the grid values
X(f) of J.

The trouble with this interpolation is that, if z is not one of the grid points,
(5.4) is a very poor approximation to f, see Fig. 8. Why is this? The interpolant
(5.4) only combines ¢,’s with n > 0, while, according to (2.4), f is, in general,
a superposition of multiples of ¢,,’s with positive and negative n.

5.2.2 The good way

Having identified the reason for the failure of the interpolant (5.4), it is easy to
construct a good interpolant. We certainly need a contribution involving ¢_;-
On the grid, ¢_; is an alias of ¢as_y; what we can do is to replace the term
ap_18ar-1(x) in (5.4) (with a still given by (5.5)) by as-16-1(2). This does
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|-l

-t

Fig. 8. The real function in Exercise 8 (solid line) and the interpolant (5.4)—~(5.5) when
M = 8. The interpolant is not even real-valued. The real part of the interpolant is the
dashed line; the imaginary part the dotted line. At grid points, the rea] part of the
interpolant matches the function and the imaginary part vanishes. The interpolant

provides a very poor approximation indeed

not change the value of (5.4) at grid points, so that we are still interpolating f
on the grid. Similarly, one replaces ap-10m-2(z) by ap-20-2(z) etc.

To be precise, let us consider separately the cases where M is odd and even.
Assume first that M is of the form M = 9N + 1. Then we use the interpolant
given by (5.5) and

ans1-n(z)+ - +ap-1da(2) + apdo(z) +ardy(z) +- -+ andn(z)

This coincides with (5.4) (and therefore with f) on the grid, because ¢on,n=
1,...,N, is an alias of épr—n-

When M is even (in practice this is the commonest situation), one could
consider either (Canuto et al. 1988)

anp1-ner () +-F ap-196-1(%)

+ aodo(z) + ardi(z) + - +an1dn-1(z) + anén(z),
or ) o . ’
and_n(z) +anvprd-nyr(z) + -+ apm-19-1(z)

+ agdo(z) + ayéi(z) + - +ay—16n-1(2),

but I prefer to settle for the more symmetric format resulting after averaging
these two expressions (Hamming 1973), 1.e.,

1
ng&lei +anpb-npr{z)+- -+ ap_16-1(x)
1

1+ agdo(z) + aror(z) + -+ an_1¢n-1(z) + maZQZAS.

]
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We write this interpolation or collocation trigonometric polynomial (Fig. 9) as
(a double prime in the summation means that the first and last term should be

halved)

N
In(f) = M: .m:&-: \”2 = w|2_ (5.6)

n=—N

-1

Fig. 9. The real function in Exercise 8 (solid line) and the interpolant (5.6) when
M = 8. Compare with Fig. 8

with the coefficients given by

fa=an, n=01,...,N-1, (5.7a)
fon=am-n, n=12... N, (5.7b)

The a, are given by (5.5).

5.2.3 Discrete Fourier coefficients

Hereafter we only consider the even M case, M = 2N . The coefficients f,. of the
interpolant (5.6) are called the discrete Fourier coefficients of f. Note that they
depend on M, ie., on the specific grid under consideration; this dependence is
however not reflected in the notation. We emphasize that to find the discrete
Fourier coefficients of a function is an easy task. It is enough to perform the
FFT in (5.5) and then rearrange via (5.7). In MATLAB, the function fitshift(a)
rearranges the output

lag,ay,.--,an—1,an, AN +1, ..;Szl_ﬂ
of the function fft by swapping the left and right halves of the vector:

T
?ziazi_,:,521_;.?37;@2(; : (5.8)
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This is a handy function because it leaves the coefficients in essentially the same
order as they are required in the sumn in (5.6).

For vectors X(f) = [f(zo). :..:HZLV_H of grid values of a function f, it
is customary to use the norm defined by

(X2 = Az (If(z)l* + -+ 1f(zm-1)I") - (5.9)

This differs from the usual norm |-| for vectors (Sect. 1.2) by the presence of the
normalizing factor Az, which is included to ensure that, for Az small [ X(N)I
is an approximation to || f]l in (2.1). This normalizing factor affects the value of
the norm of the vectors, but not the value of the norm of matrices ||All, because
{|A]| is defined (see Sect. 1.2) in terms of quotients of vector lengths. With the
definition in (5.9) the following discrete version of Parseval’s identity (2.7) holds

N

X =L Ml (5.10)

n=-—N

5.2.4 The trigonometric form of the collocation polynomial

It is possible to write the interpolant In{f) in trigonometric form (cf. the deriva-
tion of (2.9)). The result is

P 2mn 27n
In(f) = co(f)+ M én(f) cos \~\|H+W:A%vm,= ||h|n
n=l
+ En{f)cos .NABZH_
with }
mon = fo,

En(f) = fnt fonr n=12.,N,
W:A.&v s.As...:.l.\uI:f :Hﬂ.w..‘.ZIH.

The last basis function cos(2rNz/L) gives rise to the vector of grid values
FI_LM‘L,S:\:H {(saw-tooth behavior). Note that fv = f-nN results in

i

S In(f) not including a term in sin((2aNz)/L). The absentee m..ms.ﬁwi,\a\s is, on

the grid, an”alids of the 0 function, so that if is just as well if it does not feature
in In(f). There are N + 1 coefficients ¢, and only N — 1.coefficients 5n; this
makes in all' M = 2N coeflicients, which is just 1mro to wsamnvo_wﬁm at M gnd
points. If f is real-valued the coefficients én(f) and 5,(f) are real.

Exercise 25 Write a program that produces the graph in Fig. 8 with arbitrary
values of M. Run your program for M = 4,8,16,... and try to make sense of
the plots you get.

Exercise 26 The saw-tooth vector 1,-1,1,-1.... ,—1]T is one of the columns
of the Fourier matrix Far, M = IN. Why?
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Exercise 27 Use (4.3) and (5.5)-(5.7) to prove (5-10).

5.3 More aliasing: discrete Fourier coefficients vs. Founer coefficients

5.3.1 The relation between discrete Fourier coefficients and Fourier coefficients

There is an alternative way in which the interpolant (5.6) can be constructed.
We begin with the Fourier series (2.4), that we rewrite in the form

N

f= M Ww frnsmMGnimM | (5-11)

n==N+1 \m=—00

i.e., we first sum the contributions involving

b NHI-M B NFLONEEM
then the contributions involving
P N-M BN D NEM s

etc. The grid values of the right-hand side of (5.11) will not change if we replace
GnymM bY its alias ¢n. Therefore

N

MU\\ > fatmu | 6a(2) (5.12)

n=-N \m=-00

is, provided that the M series . sﬂ:f:_s converge, an .::.ogo,_m:._ of f on the
grid. (In (5.12) we have achieved symmetry by dividing 3_,, fN+mM into two
halves and attaching one of the halves to ¢y and the other to its alias b_N-)
By uniqueness of the interpolant, (5.6) and (5.12) must coincide. This leads to
the following formula (Canuto et al. 1988; Hamming 1978) relating the Fourier
coefficients .w: of f to the discrete Fourier coefficients fn

.wr:“ M .W:.*.S.LS_ :Ho_nﬁﬁ‘..._wuz. Amng

m=—-00

5.3.2 Truncation vs. interpolation

It is now expedient to compare the truncation Pn(f) of the Fourier series of f
(see (2.6)) with the interpolant In(f)-

Both P (f) and In(f) are trigonometric polynomials of the form (2.8) (but
In(f) has only 9N degrees of freedom because fnv = f-n)- The truncation
Pn(f) is characterized by the property that the residual f — Pn(f)is small in
the sense that it is orthogonal to the 9N +1 functions ¢n, 7 =0, +1,...,£N.The
interpolant In(f) is characterized by the property that the residual f — In(f)
is small in the sense that it vanishes at 2N grid points.
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The truncation Py(f) has coefficients fonos fn that are independent of
the coefficients fn with |n] > N ie.. independent of the modes in f with |n] > N.
On the other hand, the Fourier coefficients £, with |n| > N do contribute to the
interpolant via (5.13). The mode f,é.(z) of the Fourier series ‘feeds’ the alias
mode involving the basis function @, for which n =n'.

We noted already that it is easy to find the coefficients f,. On the other
hand, the coefficients fn are defined by the integrals (2.5), which in practice
should be evaluated numerically (see Exercise 28).

As we discussed in Sect. 2.3, the smoothness of f governs the decay of the
w: and hence the velocity of the convergence of Pn(f) to f. The formulae (5.13)
may be used (Tadmor 1986) to show that in a like manner, smoother functions
have discrete Fourier coefficients that decay faster. Also, the smoother f is the
faster the convergence of In(f) to f.

5.3.3 The sampling theorem

For functions f that satisfy fn =0 for |n] > N, it is true that In(f) = f =
Pn(f). Such functions, being equal to In(f) can be reconstructed from its stro-
boscopic or grid samples X(f) through (5.5)-(5.7). When written in trigono-
metric form, such functions only possess harmonics with frequencies n/L below
the upper bound N/L. Now, since Az = L/(2N), the frequency upper bound
N/L equals 1/{2Az); this is called (Hamming 1973) the Nyquist frequency. Cor-
respondingly, the periods of the harmonics of f have a lower bound 2Azx. The
spacing Ar between two consecutive samples must be smaller than haif of the
smallest period of the harmonics of f,if f is to be reconstructed from its grid
values. The function sin(2rNz/L) whose period is exactly 2Az cannot be dis-
tinguished on the grid from the 0 function.

Exercise 28 Show that fo, n=0.41,...,£N, is a linear combination of grid
values of f and that this linear combination can be seen as a numerical approx-
imation to the integral (2.5) defining f..

‘Exércise 29 Use (5.13) to compute, for arbitrary M = 9N the. discrete Fourier
coefficients of the function in Exercise 8. Show that-these coefficients decay
exponentially as a function of |n], at a rate which does not depend on M.

Exercise 30 Set M = 4 and compute the discrete Fourier coefficients of the

function in Exercise 8 via (5.5), (5.7). Do you get the same results you found in

Exercise 297
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6. Fourier Analysis of Finite-Difference Algorithms: the
Time-Continuous Case

6.1 Spatial discretizations of initial value problems

6.1.1 The discretization

We now study the numerical solution of the periodic problem (3.1)-(3.2). For
the sake of clarity, it is not advisable to look at the ‘general’ equation (3.1) and
we base our presentation on a model: the advection equation with velocity ¢ = 1
(see Sect. 3.3)

m.: = |®H§‘ Am—v

In this section we look at semidiscrete (discrete z, continuous t) approxi-
mations to (6.1). In a finite-difference approach, the variable z is discretized
as in Section 5.1 and we look for approximations U,(t) to the solution values
u(z,, ), n=0,+1,%£2,..,¢t2>0. By periodicity U, (t) = Umn(t) whenevern = m
and there are really M unknowns Un(t). These are collected into a vector U(?).
The operator 8, is replaced by a suitable finite difference formula, for instance
(Mitchell and Griffiths 1980)

o w(zng1,t) - u(zn,t)

Oru(zn,t) = e ,

(forward differences), or alternatively

Dytu(im, t) ~ ) w%?:c.
x

(backward differences), or

=AH=+_ s : bt :A.dal_. :
24z

Osu(zn, t) =~

(central differences).
The numerical approximations are then asked to satisfy

d __Unn(®) = Ua(t)
&Q:Qv‘l v , n=01,...,M-1,
or
d _ Un(t) = Uaa(t)
&Q,.Qvll i , n=0,1,...,.M—1,
or 4 ‘
Uns1(8) = Una(t)
LU.(¢) = — 2ot n—1 — ) _
@ () 9Az , n=01,....M -1
Thus U(t) is asked to satisfy the system of differential equations
d
S0 = AV, 120, (6:2)

where A takes one of the forms
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- 1/Az -1/Az 0 . 0 .;
0 1/Az ~1/Az .. 0
A= 0 0 1/Az ... 0 , (6.3a)
yjae 00 1/Ae
r—1/Ax 0 0 _\bag
1/4z 1[4z 0 0
A= 0 1/Ax —1fAx .. 0 i (6.3b)
L o 0 0 .. -1/Acl
-0 ~1/(241) 0 . 1/(242)
1/(24x) 0 ~1/(24z) .. 0
A= 0 1/(24z) 0 . 0 . (6.3¢)
T_\Gbi 0 0 0

More sophisticated choices of A are of course possible (Exercise 31).

The matrices in (6.3) and other matrices arising from discretization of (6.1)
or more generally other partial differential equations of the form (3.1) have some
important features. They are sparse: even though they contain O(M?) entries,
the number of nonzero entries is only O(M). This makes a matrix vector product
much cheaper than in the general case. Furtherimore the matrices are circulant
(Sect. 4.2). This is a consequence of the petiodicity of the boundary conditions
and (3.1) having constant coefficients.

The system (6.2) needs an initial condition U(0), which is usually taken to
be the vector X(u®) obtained by restriction of the initial condition u? in (3.2),

U(0) = X(u°). (6.4)

In practice one may integrate (6.2), (6.4) with a numerical solver for ordinary
differential equations.

Ttlie discretization of the spatial variables may alternatively be carried out by
__finite elements (Strang and Fix 1973). While in cases with several space variables
finite elements are more versatile in dealing. with the geometry of the problem,
in one space dimension there is not much difference between finite elements and
finite differences. Finite elements would also lead to a system of the form {6.2);
in fact one may think (Mitchell and Griffiths 1980) of the finite element method
as of a method to generate good finite difference schemes. In what follows we
only deal with finite differences, in the understanding that most of the material
can be extended to finite elements.

. i
= 1
8
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6.1.2 Consistency

Our aim is now to estimate the error perpetrated by taking U(t) as an approx-
imation to u(z,t). More precisely we want to measure the size of the vector
E(t) = U(t) - X(u(-,1)) called the global error. This size is defined by (see (5.9))

M-1
Bl = | D AzlUalt) - u(zn, t)[%. (6.5)
n=0

In order to bound (6.5) an indirect approach is followed, which uses the ideas
of consistency and stability (Richtmyer and Morton 1976; Sanz-Serna 1991).

Consistency refers to the relation between the partial differential equation
problem being solved and the numerical problem (6.2). This is not to be confused
with the question we want solved, namely with the relation between the solultons
of the partial differential equation problem and (6.2).

To study consistency we substitute in (6.2) the vector X(u(-,1)) of the grid
values of the true solution u; this gives rise to a residual

L) = X (u(-,1) = AX((0) (©6)

called the truncation or local error.
With the choice (6.3a), the n-th component of L(t) is given by

Laft) = (1) + Mo 2lED), 67)
Ax
or, after Taylor expanding,
1 Azr?
La(t) = dyu(zn,t) + Az Azdzu(zn,t) + M. o t(Ta, 1)+
Since u satisfies (6.1),
A
La(t) = %?:?3: 4...=0(Az), Az —0.

The definition of || - || (see Exercise 27 and (6.5)) involves summation of
M = L/Az terms, but also includes a Az factor. Therefore O(Az) entries imply
O(Arz) norms and
L)l = O(Az), Az —0. (6.8)
_ The conclusion is that, with the choice (6.3a), the problem (6.2) is an approx-
imation to the true problem (6.1), in the sense that solutions u of (6.1) satisfy
(6.2) except for an O(Axz) remainder. The finite_difference approximation (6.2)
is then said to be consistent. Since only the first power of Az appears in (6.8),
we say that (6.2)-(6.3a) is consistent of the first order.
A similar argument reveals that (6.2) with (6.3b) is also consistent of the
first order. For (6.3c),

L)l = 0(4z%), Az —0,

this is consistency of the second order.
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6.1.3 Stability

We say that (6.2) is stable, if, for each finite interval 0 <t < T, a constant c(T)
can be found such that, for all solutions U(t) of (6.2),

ool < cmuEll, 0<t<T; (6.9)

small initial conditions lead to small solutions. What is important here is that
C(T) has to be independent, not only of the initial condition U(0), but also of
the parameter Az. Independence of Az is a delicate business: as Az — 0, the
entries of the matrix A4 in (6.2) blow up and one would expect that U(t} may

also grow.
There are two things [ would like to point out:

(i) The requirement (6.9) is a discrete analogue of the well-posedness estimate
(3.8). In fact (3.8) implies

lu(-. Ol < CDu¢ O, 0<t<T,

with C(T) = exp(a(P(3:))T)-
(i) Since U(t) = exp(tA)U(0), (6.9) is equivalent to

lle'A| <C(T), 0<t<T. (6.10)

For the choice (6.3¢), (6.2) is stable. In fact, since A is skew-symmetric,
exp(tA) is unitary,
A@?Ava — a?b. — ml?a — Amn\»vl_
(Sect. 1.2) so that (6.10) holds with C(T) = 1. The stability for the choices
(6.3a), (6.3b) is discussed later.

6.1.4 Convergence

Subtraction of (6.6) from (6.2) leads to the following system of differential equa-
tions for the global error we wish to estimate

d
dt
This is similar to the system (6.2) satisfied by the numerical solution itself; the
difference is that (6.2) is homogeneous while (6.11) has the truncation error L(t)

as a forcing term.
The solution of (6.11) may be written via the variation of constants formula

(Strang 1986)

E(t) = AE(t) — L(t). (6.11)

u
E:nm;mevu \ %I%EMV%. a‘_s
Jo

Thus E(t) is the sum of two contributions. The first exp(t A)E(0) represents the
time evolution of the initial global error E(0); if U(0) is taken as in (6.4), this
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first contribution vanishes. The second contribution is a superposition of terms
—exp((t — s)A)L(s); each of the terms being superposed is the effect at time ¢
of the forcing term —L(s) acting as an initial condition at time s (Duhamel’s
principle).

Assumne that the numerical method (6.2) is stable and consistent of order p,
then, using (6.10) in (6.12),

NEN < [l 4 HIIEO)] + \c. fleC= ALl ds
< C(TEO)]| + TOT)O(Az"), 0<L<T,
and, with the standard choice (6.4) for u(0),
[Ell < TC(T)O(42) = 0(A?), 0<t<T;

the global errors decay as O(AzT) as the grid is refined. This is called convergence
of order p. To sum up, we have just proved that stability and consistency of order
p yield convergence of order p. Conversely, both stability and consistency are
necessary for no_:‘mqmmsnww this is what the celebrated Lax equivalence theorem
says (Richtmyer and Morton 1967; Sanz-Serna and Palencia 1985).

There is a subtle point we should not avoid (Richtmyer and Morton 1967;
Sanz-Serna 1985). The investigation of consistency (see Sect. 6.1.2) is based on
Taylor expansions which may only be carried out if the true solution u is smooth
enough. (More precisely if u has continuous derivatives up to a given order
depending on the specific finite-difference scheme being investigated; for instance
the derivation of (6.8) required the existence and continuity of the functions
dyu, O55u.) Hence we have really proved convergence of order p only for smooth
solutions. What is the situation for nonsmooth solutions? With the square-wave
function in Exercise 3 as an initial condition and the forward difference matrix
A in (6.3a), the truncation error L.(t) in (6.7) equals —2/Az when z, =7 and
{ = 0; the finer the grid the worse the approximation! Nevertheless it can be
shown that, for a scheme that is stable and consistent of order p, convergence
holds for all solutions, regardless of their smoothness. Smooth solutions have
IE()]} = O(AzP), other solutions have [IE(t)) = O(Az?) with ¢ < p; the exact
value of ¢ depends on the exact smoothness of u. In the square-wave example
convergence is O(Az!/*) (Sanz-Serna, 1985).

Exercise 31 For the problem (6.1) write a finite-difference formula of the form

Goufz,, t) =
aau(Tnyz, ) + o u(Tagts t) + agu(zn,t) + o_yu(zn-1,t) + a_au(zn_2,1),

with the oy, chosen to achieve the highest possible order of consistency. Analyze
the stability and convergence of the resulting scheme.

Exercise 32 For the heat equation construct difference schemes of the form (6.2)
with orders of consistency 2, 4 or 6.
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6.2 The Von Neumann stability analysis

We have not yet discussed the stability of (6.2) when A is given by (6.3a) or
(6.3b). This stability will now be investigated by Fourier analysis.

With the choice (6.3a) or (6.3b), the matrix A in (6.2) is, as any other
circulant matrix (see Sect. 4.2), normal (Section 1.2). Therefore || GGQ\»V__.H
exp(ta(A)), with a(A) the spectral abscissa of A (Section 1.2). Then the stability
condition (6.10) holds if and only if

sup a{ A) < o©. (6.13)
Ax
This is called the Von Neumann condition and is a direct analogue of the well
posedness condition o < o0 in Sect. 3.2 but here there is an extra parameter

Az,
The eigenvalues of the most general circulant matrix were found in (4.6) by

Fourier analysis. For (6.3b) (backward differences) the eigenvalues are

11 A.Ni\s ~ Dni

n=01...,.M~-1

n=01..M-1 (6.14)

this leads to a(A4) < 0 and therefore to stability with stability constant c(ry=1
On the other hand, for (6.3a) (forward differences) the eigenvalues are

Q:llmlllmlmxc dmne :Ho__i,;zlr Am._g

- )

Ax Az M

thus 2/Az is an eigenvalue (n = N = M/2) and a(A) > 2/Az. As the grid
is refined for fixed ¢, ||exp(tA)}| > exp(2/Az) grows exponentially and we have
instability. By the Lax equivalence theorem the scheme (6.2)~(6.3a) is not con-
vergent, in spite of the fact that it is a ‘reasonable’ discretization of (6.1). 1
would like to emphasize that it is the growth of exp(tA) for fixed t as Az — 0
which prevents stability and convergence. This growth is not to be confused with
growth for fixed Az and t — oo, see Exercise 34.

Let us summarize. We use Fourier analysis to find the eigenvalues o, of the
system (6.2) we are investigating. The eigenvalues of exp(tA) are then exp(ton)
and, due to the normaldy of A, the norm of exp(tA), which we want bounded,
coincides with the eigenvalue exp(to,) with maximum modulus. This arises from

the o with maximurn real part.

Exercise 33 Use the Von Neumann method to investigate the stability of the
difference schemes constructed in Exercises 31 and 32.

Exercise 34 Consider the equation dyu = Ozu + u. Study the well-poseduness of
the corresponding periodic initial vatue problem (cf. Exercise 16). Discretize this
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problem by central differences and analyze the stability and convergence of the
resulting discretization. Note that [lexp(t A)|| grows with and, nevertheless, the
numerical method is stable.

Exercise 35 Discretize the system (3.7) by the finite difference scheme

A, Wa)=Waorl
&«\:ASIG Az , n=01...,M-1,
d Vigr(t) = Val2)
—W.(t)=c¢ ntl = - 1.
i (ty=c¢ Az , o n=01,... . M-1
Introducing the vector of unknowns U = [Vo,Wo,..., VM-1, War_1]T, write the

difference equations in the format (6.2), with A of dimension 2M (M is, as
always, the number of grid points). Is the matrix A you obtain a circulant ma-
trix? The answer should be no. Use Fourier analysis to find the eigenvalues of
the matrix A you have found. The result should be HAwﬁ.\bavmmz?aba\hY n=
0,1,...,M—1(Hint: Assume that the eigenvectors have V,, = Aexp((2aniAz)/L)
and W,, = Bexp({(2mniAz)/L) and substitute in AU = oU.) In general, for sys-
tems of partial differential equations the matrix is not circulant, but is such that
its eigenvalues can be explicitly found by Fourier analysis. The condition that,
the real part of the eigenvalues of A should be bounded above is still necessary
for stability, because for any matrix || exp(tA)|| > plexp(tA)) = exp(ta(A)),
t > 0. However the study of the eigenvalues of A is not in general sufficient
for stability, because if A is not normal the norm [|exp(tA)]| may be strictly
larger than the spectral radius plexp(tA)) = exp(ta(A)). For this reason for
linear, constant coefficient systems of partial differential equations with periodic
boundary conditions, the Von Neumann condition (6.13) is necessary but not
sufficient for stability (Richtmyer and Morton 1967).

6.3 The roles of stability and consistency from a Fourier viewpoint

The Von Neumnann stability test provides the easiest application of Fourier meth-
ods to the numerical analysis of initial value problems. There are other appli-
cations certainly worth studying. For instance, it is useful to gain insight, via
Fourier analysis, into the equivalence between convergence and consistency plus
stability.

We still look at the advection equation (6.1) solved by any of the methods
in (6.2)-(6.3). The theoretical solution was found in (3.6) and is given by

00

u(z, 1) = M exp(pnt)iodn(z), fn = —2mni/L.

n=-—oo

We evaluate u at grid points in order to make it possible a comparison with the
numerical solution U(t). The result is
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X(u(, 1) = Y, exp(uat)inX(dn), pin = —2mni/L.

g relations (5.2) to replace each X(én) by an X(ém)

n we wrote formula

(6.16)

We could now use the aliasin
with —N < m < N; we performed such a replacement whe

(5.11). However we prefer to leave (6.16) as it stands.

We next write the numerical solution U(t) in a format similar to (6.16).

Before we do this, let me go back to the system (4.4) with general circulant

matrix. One easily checks that, for n = 0, 11,42, ..., the vector X(¢n) in (5.1)

is an eigenvector of the matrix in (4.4); the corresponding eigenvalue is
27ni 2r(M — I)ni

on = ag + a1 €Xp ulml +---+apm-1€Xp M A@H‘NV

Does this mean that the M X M matrix A possesses infinitely many eigenvec-
tors/values? Certainly it does not. If n = m, then X(¢,) = X(ém), so that
we have only found M distinct eigenvectors. Indeed, upon recalling (5.3), we
see that the X{¢,) are scaled versions of the columns V, of m.>|m_ we resorted
to in Sect. 4.2. Correspondingly, in (6.17) 00 = Om whenever n = m, because
exp(2nfni/M) is an M -periodic function of n. Comparison with (4.6) gives us
the reassuring conclusion that we have again found the M eigenvectors/ functions
we had in Sect. 3.2. The difference is that now we let n to be arbitrary in (6.17),
while in (4.6) n was between 0 and M — 1. The solution of (4.4) with initial
condition X(u®) is then

o0

Y explont)inX(én)

n—-—00

(6.18)

This certainly has the correct value at time £ = 0; furthermore, it satisfies (4.4)
as one easily checks by substitution in the differential system. We could use of
the aliasing relations (5.2) to rewrite (6.18) as a sum with only M terms; the
result would be the solution (4.11) we found in Sect. 4.2.

It is time to leave the general problem (4.4) and return to our finite-difference
method (6.2)-(6.3)- The numerical solution with initial condition (6.4) is given
by (6.18) with the oy equal to the eigenvalues of the matrix A corresponding
to the specific choice of finite-difference method; for instance for the central-
difference method (6.3c), the eigenvalues (6.17) are readily found to be

_ |m! Ws.lm llls.l " 2rnAzx
Q:\!Bam_: )= bam. 7 .

For backward and forward differences the eigenvalues were found in (6.14) and

(6.15). v
Subtraction of (6.16) from (6.18) provides the expression for the global error

(6.19)

BQ) = Y. lexp(ont) - exp(nt)] inX(bn).

n=-—0oc

(6.20)

b,

kY
T
W

¥

o B i
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This is the representation we wish to discuss. Let us first fix a value of n

and look at the corresponding term in the series (6.20). We have an exponent

ftn coming from the theoretical solution and an exponent o from the numerical

solution. To be specific, assume that we use central differences with o,, given by
(6.19). As the grid is refined (Az — 0), Taylor expansion in (6.19) yields

i A?:BH 1 i [2maz\’
op=—— | —— |+ 25 .
Az L 6 Az L

4713034
3L3

= o + Az’ -,

so that g, approaches g,,. A fixed mode becomes better and better approximated
as Ar — 0. This is the Fourier analysis expression of the consistency of the
method. In fact, above, 0n = jin + O(Az?) because (6.3c) leads to consistency
of the second order. For forward or backward differences 05 = tn +0(Az). This
is the good news: consistency guarantees that all is well as Az — 0 with n fixed.

The bad news is that, on any fixed grid you may be using, there are numbers
n for which o, and p, are grossly different. This is made clear in Fig. 10, that
should be studied carefully. While the figure refers to (6.2), (6.3c), a similar
discussion holds for the choices (6.3a) or (6.3b).

If, for each Az, there are terms in the series (6.20) for which exp(aat) —
exp(pat) is large, how is it possible to get convergence, i.e. small E(£)7 It is the
@2 that come to the rescue: they must decay as |n| — oo, because the series in
(2.7) converges under the only assumption that u® is in £2[0, L]. Furthermore,
we noticed in Sect. 2.3, that, the smoother the initial datum u°, the faster
the @l decay. It is this decay that is implicit at the heart of convergence and
explains why the rate of convergence decreases for nonsmooth solutions. The
mathematical details are as follows (Richtmyer and Morton 1967). Assume, that,
at a mmé: .2:,5 ¢t > 0, we want to make the norm of E(t) less than a given small
quantity via a suitable choice of Az. One begins by finding an index v for which

> )

In|>v

(6 21)

is .mb_._‘ This is possible because of the convergence of the series in (2.7). Once
this v is known, we take Az small enough to ensure that

37 [exp(aat) — exp(pnt)] in X(¢n)

Inl<v

is small; this is possible for a consistent scheme because the sum involves a finite
:5.:72 of modes, and for each mode o, approaches y, as the grid is refined.
This leaves us with the remaining terms

MU [e7nt — e*~*] 4p X(8n)-

[n|>v

(6.22)
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e

Fig. 10. The horizontal axis corresponds to the wave number 2xn/L. The solid line
gives the imaginary part of the exponent pn in the theoretical solution (6.16). The
sinusoids give the imaginary part of of the exponent o, in the central difference nu-
merical solution (6.18)-(6.19). The dotted line corresponds to Az = 1, the dashed line
has Az = 1/2 and the dash-dotted line has Az = 1/4. Let us first look at a fixed
location in the horizontal axis (i.e., a fixed wave number): the numerical o, approach,
as Az — 0, the theoretical pin. This is a reflection of the consistency of the scheme.
Let us then look, for fixed Az, at on a5 2 function of the wave number. The numerical
0. is close to pn only for those wave numbers 2x|n|/L that are small relatively to
(Az)7". In other words, only wave lengths that are large relatively to the grid spacing
Az are well approximated on any given grid. For instance, when the wave length L/n
is 12Az, one has o0, = —1/(24z) and ptn = —ir [(6Axz); since x/6 = 0.52, this means a
relative error of less than 5%. When the wave length is only 44z, pn = —in/(241) and
on = —iAzx with relative error of about 50%. For the Nyquist wave number given by
x/Az (saw tooth mode) the approximation is completely wrong because on = 0. Note
(see the dotted line) that o, as a function of the wave number is a periodic function
that repeats itself after the Nyquist value. This periodicity is a consequence of aliasing.
Smaller Az lead to larger Nyquist wave numbers; the grid supports more essentially

different modes

Here the #° are small thanks to Am,ﬁv,w:mermﬁ:‘: mxv?asvivo::mma v<
the well-posedness of the theoretical problem. Therefore (6.22) will be small,
provided that exp(ont) is under control. Now the control of the size of exp(ont)
coincides, as we discussed in the previous section, with the issue of the stability

of the method.

Let me summarize. Consistent finite difference schemes approximate badly
the small wave length modes. Any reasonable initial condition is relatively poor
in small wave length modes and the numerical method will perform satisfactorily
if the small wave lengths, that are being misrepresented, are controlled and
remain small. This control corresponds to stability.

SRR
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S g
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Exercise 36 Draw a figure similar to Fig. 10 for the method constructed in

Exercise 31. Compare with Fig. 10. Observe the advantages of the high-order
method (Kreiss and Oliger 1973; Fornberg 1975, 1987, 1990).

6.4 Numerical dissipation and numerical dispersion

Let us again consider the central difference solution (6.18)—(6.19) that we write
in trigonometric form as (see Sect. 3.3)

o0
>cNAS+MU\»:N cos | —z — — sin

n=1

With the terminology of Sect. 3.3, the numerical solution to the dispersionless
problem (6.1) thus turns out to be a dispersive wave with dispersion relation

1
wn = NM&:?:BHY Kn = mlam“

in the limit Az — 0 one has w, = K, which is the correct relation for the
partial differential equation (6.1). For any (nonzero) Az, no matter how small,
there is a dependence on &, of the phase speed w, /&,. For instance, small wave
numbers «, travel with velocities close to the correct value 1, while the wave
number k, = x/Az (the Nyquist value corresponding to the sawtooth mode)
stands still at 0 phase velocity. As a result of the spurious dispersion introduced
by the process of discretization, the shape of the numerical solution will change
with t (cf. Fig. 5).

Spurious, numerically induced dispersion is not the only problem discretiza-
tion may bring. Spurious numerical dissipation is also a common occurrence, see
Exercise 37. The study of the properties of dissipation and dispersion of numer-
ical schemes is a key ingredient in the analysis of the schemes and is related
to several theories from physics (Vichnevetsky 1987a, 1987b, 1989, 1990, 1992;
Trefethen 1982, 1983).

Exercise 37 Write in trigonometric form the solution of the backward difference
method (6.2), (6.3b) and notice the spurious dissipative behavior.
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7. Fourier Analysis of Finite-Difference Algorithms: the
Fully-Discrete Case

7.1 Full discretization of initial value problems
7.1.1 Time discretization

In Sect. 6 the variable ¢ remained continuous. We now study fully-discrete nu-
merical methods where t is also discretized (the term ‘fully’ indicates that all
independent variables become discrete). We denote by At the time increment
and consider the grid values t™ = mAt, m=0,1,2,...

In order not to blur the exposition, I shall still concentrate on the model
equation (6.1); however the material has wider applicability. A fully-discrete
finite-difference scheme for (6.1) may easily be obtained by replacing 8u and 9z u
by suitable increment quotients. It is however more advisable not to discretize ¢
and z simultaneously. We proceed in two stages. First we discretize = and obtain,
say, one of the methods in (6.2)~(6.3). Once the system of differential equations
(6.2) is available, we discretize its independent variable ¢. The discretization of ¢
then takes place in the context of a system of ordinary differential system rather
than of a partial differential equation {Sanz-Serna and Verwer 1989). Any of the
standard numerical methods (Lambert 1991; Hairer and Wanner 1991, Hairer et
al. 1993, Sanz-Serna and Calvo 1994) for systems of the form

WM%AS =F(, Y1), (7.1)
is in principle eligible. Some well-known one-step possibilities are the Euler rule
vl Y™ o4 AFE™,Y™), m=0,1,2,..., (7.2)
(Y™ is the numerical approximation to Y(t™)), the backward Euler rule
ymHl = ym 4 AR YY), m =012, (7.3)
and the trapczoidal rule
yrHl=Y" 4 mwmmﬁstkaiv + %m:s.%ay m=012,.... (74)

Higher-order methods include the celebrated (but obsolete) classical Runge-
Kutta fourth-order method.

The Euler method is ezplicit; it provides a formula for finding Y™*! once
the preceding Y™ is available. The backward Euler and trapezoidal rules are
implicit: to find each Y™+ one has to solve a system of algebraic equations,
which may be a costly task. Multistep methods where Y™*! is linked to Y™,

Y™ 1, etc. are possible and may be very efficient; I am sorry they cannot be

considered here.
All reasonable one-step methods (including (7.2)-(7.4)) have the property
that, when the system (7.1) takes the simple linear form
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d
Mm<Qv = BY(t), (7.5)

B a constant matrix, the approximation Y™*! may be obtained from Y™ by
matrix multiplication. More precisely

Y™+ = R(AtB)Y™, m=0,1,2,..., (7.6)

where R(z) is a rational function (see Sect. 1.2) that depends on the method
but not on the specific problem of the form (7.5). For instance, R(z) = 1 +z for
the Euler rule, while the backward Euler rule has R(z) = 1/(1 - z) and for the
trapezoidal rule R(z) = (1 + z/2)/(1 — z/2). Thus with each one-step method
one associates a rational function; it turns out that many theoretical properties
of the method may be studied by looking at the corresponding R(z). In practice,
(7.6) is implemented by solving the linear system of equations P(AtA)Y™! =
Q(AtA)Y™, where P and Q denote the numerator and denominator of R. When
solving this system of equations the sparsity of 4 is important.

The formula (7.6) should be compared with the corresponding expression for
the true solution

Y(t™*!) = exp(AtB)Y(t™), m=0,1,2,....

Such a comparison reveals that R(z) should approximate exp(z); for instance
with the Euler rule R(z) = 1+ z consists of the first two terms of the expansion
of exp(z) in powers of z. In general for a method of order p, R(z) differs from
exp(z) in terms of order O(z2P*').

7.1.2 Fully discrete methods

As described above, the fully discrete scheme is obtained by time discretization
of the time continuous problem (6.2). The fully discrete solution U™ at time {™
is a vector [U*, Uy,™ ..., Uf_,]T, where U™ is an approximation to u(z,, ™).
According to (7.6), the vectors U™ are recursively found from the formula

umt! = R(AtAU™, m=0,1,2,..., (7.7)

$.&o~m A mm. the matrix in (6.2) and R(z) the rational function of the specific
M_va.m_,,ovv_:m method being employed. The initial U® is usually taken as in
6.4).

As an illustration we present the method corresponding to using the Euler
rule (7.2) along with backward differences in space (see(6.3b)). When written
componentwise, the formulae (7.7) become

m m
L Y

ymtl = ym — At E?: ‘n=01,....M-1, m=012.... (18)
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7.1.3 Consistency, stability and convergence in the fully discrete case

The analysis of methods of the form (7.7) is also based on the ideas of consis-
tency, stability and convergence. The truncation errors L™ are again defined by
substituting the grid values of the theoretical solution in (7.7)

AtLys = X(u(-, ™) = RALA)X(u(,t™))- (1.9)

Note the normalizing factor At in the left-hand side. This is introduced because
the format (7.7) does not directly approximate the partial differential equation
(6.1), it rather approximates At times (6.1). (Look at the example in {7.8):
one would have to divide by At before having a discrete analogue to (6.1).)
Consistency of order p in space and ¢ in time means that JIL™{| behaves as
O(AzP + At?) upon grid refinement. The discretization (7.8) has p = ¢ = 1.
Some authors define the truncation error to be the right-hand side of (7.9); for
those authors the truncation error of (6.1) is O(Az At + At?).

The discretization (7.7) is said to be stable (cf. (6.9)) if, for each finite time
interval 0 < t < T, a constant C(T) can be found such that for all solutions of
(7.7)

flum < ciulll, 0<tm<T
Here it is crucial that C(T) should not depend on Az and At. From (7.7),
U™ = R(AtA)™U?, so that the scheme is stable if and only if (cf. (6.10))

o<t™ <T. (7.10)

\R(ALA)™ || < C(T),

The global errors are now given by U™ — X(u(-,t™)) and a have a represen-
tation similar to (6.12), namely

E™ = R(ALAY"E® — ALY R(AtAY™ LY (7.11)

=1
From this formula it is easily concluded, as in Sect. 6.1.4, that a stable scheme
with consistency of order p in space and order ¢ in time has, for smooth solutions,

global errors [|[E™|| that behave as O(Az? + At?).

Exercise 38 Write componentwise the nine schernes resulting from combining
(6.32)-(6.3b) with (7.2)~(7.4). Study the consistency.

Exercise 39 Prove (7.11).
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7.2 The Von Nemmnann stability analysis

The stability condition (7.10) may be investigated by Fourier analysis. If A is
normal, then R(AtA)™ is also normal and (Sect. 1.2)

IR(ALAY™| = p(R(ALA)™) = p(R(ALA))™;

for stability this should be bounded by C(T) whenever 0 < t™ < T. It is not
difficult to show (Richtmyer and Morton 1967) that this is equivalent to the
existence of a constant C'(T), independent of Az and At such that for all Az
and Al

p(R(AtA)) < 14 C'(T)AL.
Upon recalling that the eigenvalues of R(AtA) are given by R(Ato) with o
eigenvalue of A, we conclude that stability is equivalent to

|R(Ataa)| < 1+ C'(T)At, (7.12)

as o, runs through all the eigenvalues of A. These were found by Fourier analysis
in Sect. 6.2. The condition (7.12) is the Von Neumann condition for fully discrete
schemes.

Take (7.8) as an example and assume that the space and time grids are
refined so as to keep the miesh ratio r = At/Az a constant. Here R(z)=1+z2
and the eigenvalues of A are given in (6.14). Therefore the stability requirement

reads
2nni

~+~.A8€ T

since the left-hand side is independent of At this condition can only hold if

omi
—+<.A2€ IMA.\HV|~V <1,

It is easy to check that (7.13) is fulfilled if and only if r < 1. Therefore the
scheme is stable and convergent only if the ratio r is kept below 1; this behavior
is called conditional stability.

oM =1

|_v <1+C'(MAat, n=0,1,.

n=01,.,M-1 (7.13)

Exercise 40 Study the stability of the nine schemes introduced in Exercise 38.

7.3 The roles of stability and consistency from a Fourier viewpoint

The solution U™ given by the method (7.7) can be written as

.o R
um= Y R(Ato,)"i%X(¢n), m=0,1,2,... (7.14)
) n=-—o00
This is a fully discrete analogue of (6.18). Subtraction from (6.16) (evaluated at
t = t™) leads to the following expression for the global error
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E" = Y [R(Aton)" - exp(Atpn) a0 X(6n), m=0,1,2,....

n=-—00

This is a fully discrete version of {6.20) and may be analyzed as in Sect. 6.3.

For a consistent method, any fixed mode of the theoretical solution can be
well approximated by choosing Az and At suitably small. If Az is small, then,
as we know, o, is close to pn. If At is also small (relatively to 1/|pnl) then
R(Ato,) is close to exp(Atp,,) because R(z) approximates exp(z) for |z| small.
Once more, the bad news is that for any given values of Az and Al there are
values of n for which R(Ato,) is a very poor approximation to exp(Atpn). For
this reason consistency is not sufficient to guarantee convergence: one needs some
control on the short wave length components (stability). As illustrated by the
example in Sect. 7.2 stability may impose an upper bound on the value of At that
can be used on a given spatial mesh. It is often the case that this upper bound
forces At to be smaller (or even much smaller) than the value one would like to
use for consistency reasons, i.e., the value that would make At|u,| small enough
for the modes that are significantly present in the theoretical solution. This
situation where stability rather than the natural time-scale of the theoretical
solution dictates the choice of time step is called stiffness and unfortunately is
a common occurrence in numerical differential equations (Hairer and Wanner
1991; Dekker and Verwer 1984). It is stiffness that makes implicit time stepping
methods appealing for partial differential equations, explicit schemes at best lead
to conditional stability (Sanz-Serna and Verwer 1989).

Exercise 41 Prove that (7.14) is indeed the solution of (7.7) subject to (6.4).

7.4 Numerical dissipation and numerical dispersion

Let us particularize (7.14) to the scheme considered in Sect. 7.2 (backward dif-
ferences in space and Euler time-stepping, r = At/Az a constant). The result
is

um = MU {1 4+ 7 [exp(—kqiAz) — )" 4% X(4n), &a = 2mn/L. (7.15)

We now wish to write the quantity in curly brackets as the exponential of its
logarithm. As Az — 0 the Taylor expansion of this logarithm 15

log {1 + r [exp(—knidz) — 1]} = log Aﬂ ~ rep,tAz — Wﬂawbﬁw + - W
= —rKniAr I‘W.l_ —r)kiAz? +-
1
= At | —Knptl - .w.? —rkiAz + -

Thus, (7.15) may be rewritten as

v
3
#

ot

¢ 5,

3
3
i)
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U™ = MU exp(—Knit™)exp IWS - r)kiAZt™ + - u® X(4n).

n- -0

Here the first exponential provides the correct advection with velocity 1; the
second exponential arises from the error in the numerical method. For r < 1, the
behavior of the leading, O(Az), term is dissipative (see Sect. 3.3). The dissipation
coefficient is proportional to Az and, as expected, finer spatial grids induce less
spurious dissipation. Note also that the dissipation coefficient decreases as r
approaches 1: unexpectedly, for this numerical scheme, longer time steps on a
fixed spatial grid create less dissipation, see Figs. 11-12. For r > 1 we know
from Sect. 7.2 that the scheme is unstable and hence useless; here we see that
the numerical solution behaves as the solution to an ill posed backward heat
equation. The case r = 1 is exceptional: in the formula above the O(Az) terms
in the global error disappear. Indeed, for r = 1 all error terms disappear and the
scheme provides the exact theoretical solution. This is possible because we are
dealing with a very simple partial differential equation: the theoretical solution
is constant along the characteristic lines = t +§, and for r = 1 so is the
numerical solution because, then from (7.8), Up*! = UL,

As we may see numerical methods have a dynamics of their own, which
may be quite different from that of the equation being integrated (Sanz-Serna
1992). Modified equations are a popular way of analyzing spurious dissipation
and dispersion (Warming and Hyett 1974; Griffiths and Sanz-Serna 1986).

Exercise 42 Repeat the analysis in this section for the scheme for (6.1) based on
central differences and trapezoidal time-stepping. Are the leading terms in the
error dissipative or dispersive? Check your analysis by running a program.

8. The Practical Relevance of Fourier Analysis of
Difference Methods

In Sects. 6-7 we have seen how Fourier techniques provide a powerful means for
analyzing the stability and other properties of difference methods. The insights
derived by Fourier analysis are essential when understanding difference methods.
This insight, by itself, justifies the study of Fourier analysis.

The fly in the ointment is that, strictly speaking, Fourier analysis is only ap-
plicable under very restrictive conditions: periodic boundary conditions, linear
equations, constant coefficients. This limitation in scope is particularly unfortu-
nate because the difference numerical methods being analyzed have themselves
no limitation in their range of applicability. Indeed one of the prime advantages
of difference. methods is their versatility: it is easy to write down a difference
scheme for virtually any problem one may encounter.

In spite of these comments, Fourier techniques are used in practice in the
analysis of linear problems with variable coefficients, of nonlinear problems and
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Fig. 11. The solution at time ¢t = 27 of the advection equation Jiu = ~8ru, on
0 < z < L = 2x for the initial datum in Exercise 8. The true solution is the solid
line; this coincides with the initial condition because in 2x units of time the u(-, t) has
moved 2x units to the right. The numerical method (7.8) is applied with M = 32 (so
that Az = /16) and At = 8Az/9 (so that 36 time steps have been needed). The dots
represent the numerical solution; clearly the scheme is dissipative

4 v v

al ]

.N . » .
0 )} 2 3 4 s [

Fig. 12. The experiment in Fig. 11 has been repeated with the only change that now
At = Azf4. With this smaller time increment 128 time steps have to be taken to reach
the final time ¢ = 2x. In spite of the extra work, the result is more dissipative than

tkat in Fig. 11

of problems whose boundary conditions are not periodic. For a linear problem
with variable coefficients (say 8;u = a(z,t)0;u + b(z,t)u) one ‘freezes’ the co-
efficients at a fixed, representative value (ag = a(zo,%0), bo = b(zo,%0)) and
analizes the resulting constant coefficient problem (8,u = aod;u + bou). For a
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nonlinear problem one linearizes around a representative particular solution (for
instance, for u = ud, + Jyru, linearizing around u = 0 implies discarding the
quadratic term ud; u to get dyu = dzyu). When the boundary conditions are not
periodic, one changes during the analysis the boundary conditions into periodic
conditions. In general (but there are some exceptions), such analyses are not
mathematically justified. They nevertheless provide useful rule-of-thumb indica-
tions of the behavior of the scheme being employed. As expected, the predictions
based on Fourier analysis tend to be optimistic. A Fourier analysis stability limt,
such as Al < (1/2)Az?, is likely to be too generous; the real scheme will have
a smaller stability limit due to nonlinear eflects, boundary conditions etc. that
are ignored in the analysis.

9. Spectral Methods

9.1 Spectral methods for periodic linear constant coefficient

problems
9.1.1 The Galerkin approach

For periodic, constant-coefficient, linear problems (3.1), the solution is available
in closed form (3.6). Why do we then need difference methods for these problems?
Well, we do not really need them; it is better to use (3.6) directly. It is then ironic
that Fourier analysis of difference methods is mathematically justified precisely
in those cases where the difference method is not really useful!

The only difficulty with (3.6) is that it comprises infinitely many terms; too
many for a practical solution. We have to truncate somewhere and then the
numerical solution is defined to be

N
:%AHVS = M mxﬁAt:Smw&:AHvA (9.1

n=-N

In u the superscript N indicates how many modes are being kept and G means
Galerkin. Galerkin methods are projection methods and (9.1) is a projection
method because

u (&) = Pr(u(-,1)); (9.2)
at each time ¢ the numerical solution is the orthogonal projection (see Exercise 2)
of the theoretical solution onto the space of trigonometric polynomials of degree
< N. Hence the error equals u(-,t) - Py (u(+,1)), which we know (Sect. 2.3) con-
verges quickly to 0 if u is smooth. How quickly depends on the exact smoothness;
the error may even be exponentially small as N — oo.

To effectively construct {9.1) we need the Fourier coefficients 42, with |n| <
Mf these would have to be calculated by numerical evaluation of the integrals
2.5).

The method (9.1) is said to be a spectral Galerkin method. It uses the explicit
knowledge of the spectrum of eigenvalues of the operator P(8,) in the equation
(3.1) being solved.
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9.1.2 The collocation approach

One could avoid the computation of the 42 in (9.1) if these were replaced by the
discrete Fourier coefficients @ of u® relative to a grid with M = 2N points. The
result would be an alternative numerical spectral approximation given by

N

W(z,t)= 3 explunt)iddn(z). (9.3)

n=~N

The subscript ¥ means pseudospectral and indeed (9.3) is called a pseudospectral
solution or, alternatively, a spectral collocation solution. Now the %9 are found
by discrete Fourier transform as explained in Sect. 5.2.2. The cost of forming
(9.3) is then O(M log, M) operations, which is competitive with finite diflerence
methods. Without the fast transform, (9.3) would require O(M?) operations,
which is not really so appealing. .

As we discussed, (9.1) is based on projections: one projects u? to find the
required coefficients and the method gives back the projection of the theoretical
solution, see (9.2). In the pseudospectral solution (9.3) one interpolates u® on
the grid. However the method does not yield at time ¢ the interpolant of u(-,t).
That would be too much; it would mean that the method was actually exact at
the grid points. To clarify this, recall that, by (5.13),

=
~0 _ M” ~0
u, = .==+31S
m=-00

and hence
oo

ufl (z,t) = Y En(t)iné(z)

n=-00

where

Eq(t) = exp(pmt),

if n = m, |m| < N (i.e., m is the mode below the Nyquist limit into which the
mode n becomes aliased), and
1 1
En(t) =  exp(unt) + 3 exp(u_nt)
if n =N (ie., n is aliased into the Nyquist limit).

Comparing with the theoretical solution (3.6), we see that the source of error
in (9.3) is the following. High wave numbers are aliased when interpolating u®
and later are evolved with exponentials exp(pmt) that really correspond to the
modes into which they have been aliased. High wave numbers are kept in the nu-
merical solution but falsified. On the Galerkin solution they are just suppressed,
which is in a way another form of falsification.

In any case, both the Galerkin and pseudospectral solution approximate with-
out error all the modes representable in the grid (cf. Fig. 10). With these methods
the errors depend on the high Fourier coefficients %3, |n| > N. For this reason,
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the accuracy of ug or uy, depends only on the decay of the @Y and therefore is
only limited by the smoothness of u®. The smoother u® the faster the conver-
gence. If u® is very regular, the errors may be exponentially small as N — oo.
For a stable time-continuous difference scheme of order of consistency O(Az?),
errors are never better than O(Az?) for very smooth solutions and may be worse
than that if u is not so smooth.

Exercise 43 Use (9.3) to solve the heat equation. Write a program that, for a
given tnitial 4%, plots the numerical solution at any given time.

9.2 Pseudospectral difference matrices
9.2.1 First derivatives

The spectral methods introduced in Sect. 9.1 for periodic, constant coefficient,
linear problems can be extended to periodic, variable coefficient, linear problems
and even to periodic, nonlinear problems. This extension is presented in Sect. 9.3.
We now make a small detour. We wish to study the following problem. We are
given the grid values X(f) of an L-periodic function f(z) and are asked to find
approximations to the grid values X(f') of the derivative. We could of course
use standard finite-difference formulae, such as (f(zn41) — f(2n))/Az, but such
standard formulae do not take into account that we are dealing with periodic
functions. A better recipe is: (i) interpolate the given grid values as in (5.6), (1)
differentiate the interpolant Iy to find, in view of (2.12),

N
" -
IN(FY = Y Anfadn(2),
n=-—N
and (iii) evaluate the derivative at the grid points. The end result is a vector
X'(f) of approximations to the values of f’ at grid points (not to be confused
with the vector of exact derivative values X(f’))

X'(f) = Mw AnfaX(8n). (9.9)

n=—~(N-1)

Note that the terms with [n] = N do not feature in (9.4). Why? Recall from
(5.6) that f_ny = fn. On the other hand, A_y = —An and then the |n| = N
terms in In(f) equal Ay fn[dn(z) — d_n(2))], ie., 2iAn fn sin(2rNz/L); the
function sin(27Nz/L) has zero grid values and therefore the |n] = N terms do
not contribute to (9.4).

The process of finding X'(f) as a function of the data X(f) is linear and
therefore there exists an M x M matrix D such that

X'(f) = DX(f).

This matrix is called the pseudespectral differentiation matriz. It is a real matrix:
for real X(f), (9.4) contains the complex conjugate of cach of its terms.
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The following representation is most important

cn Aw.\.wwzv,_ \. Awm_m?v . a.s

Here P is the M x M permutation matrix

_ On In
= Tz QL

and A is an M x M diagonal matrix
A=Diag (0, A_ny1, AoNgz, -, Ao1, A0, A, - ANC2, AN )

In (9.5), D is written as the product of three factors. The rightmost factor com-
prises the matrix (1/M)Fp that finds the discrete Fourier coefficients as in (5.5)
and the permutation matrix P that rearranges them as in (5.8). The central ma-
trix A multiplies each discrete Fourier coefficient by the corresponding eigenvalue
A, Note that A includes a 0 entry that suppresses the |n| = N contribution. The
leftmost factor in the right-hand side of (9.5) undoes the action of the rightmost
factor, i.e., computes grid values given discrete Fourier coefficients.

The Fourier matrix Fp has all its entries # 0 and, as a consequence, the
matrix [J is not a sparse matrix: D is full. When using finite differences, dif-
ferentiation is performed through a sparse matrix, see e.g. (6.3). For standard
central differences (6.3¢), the differentiation matrix has two nonzero entries per
row. For fourth-order differencing (Exercise 31), sixth-order differencing, .. .the
number of nonzero entries per row is four, six, .. . ; higher order implies less spar-
sity. The pseudospectral matrix can be seen (Fornberg 1975, 1987, 1990) as the
full limit of difference matrices of increasing order of accuracy and decreasing
sparsity.

Since P is its own inverse, (9.5) may be rewritten as

D= Fy'PAPFy. (9.6)

To find DX for a given vector X requires (i) an FFT, (ii) a permutation (in
MATLAB, this is achieved by the function fftshift, see Sect. 5.2.2), (iii) M
complex multiplications by the diagonal entries of A, (iiii) another permutation
and (v) an inverse FFT transform. This involves a computational cost that is
essentially O(M). I emphasize that it is not advisable to find explicitly D by
multiplying the five matrices in (9.6): if one uses the explicit form of D and
carries out the multiplication DX by the standard matrix-times-vector recipe,
then the work is O(M?).
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9.2.2 Higher derivatives
The idea in Sect. 9.2.1 is readily generalized to higher ﬂ_a:§:<8..ﬁ. obtain
approximations to the grid values of f”, we again differentiate the interpolant

to get

N
I = Y N fadale),

n=-N

and then evaluate at grid points

N
X(f)= 3 A2 faX(dn). (9.7)

n=—N

Now the || = N terms do not disappear because A2 y = A% In matrix form
X"(f) = DPX(f),

with
D@ = Fi' PAD PFyy,

where, in turn,
A® = Diag (A2 5, A vy Aovaz, -, A2 008, AR AR ) -

A small point: A(?) is not the square of A; the (1, 1) entry of A? is zero. For
this reason

D? = (Fy' PAPF) (F3' PAPFy) = Fy! PA*PFy

does not coincide with D()_If you first interpolate and then differentiale twice
you get a contribution with |n| = N (in the trigonometric representation of the
interpolant as in Sect. 5.2.4, the second derivative of cos(2# Nz /L) is a multiple
of cos(2rNz/L) and stays). If you interpolate, differentiate once, evaluate, and
again interpolate and differentiate, the contribution with |n| = N perishes in the
first differentiation and never raises from the dead. Nevertheless, the difference
between D? and D®) is in practice very small: these two matrices only differ in
the way they treat the highest discrete Fourier mode.

Higher derivative matrices D(*) can be constructed in a similar way. Alter-
natively these may be replaced by powers D* of the first-derivative matrix D.
Independently of the value of k the multiplication D)X (or D*X), requires a
direct and an inverse FFT plus M multiplications.

Exercise 44 Prove that D is a skew-symmetric matrix. Prove that D is a circulant
matrix.

Exercise 45 Use (9.6) to find explicitly D when M = 4. Check that, for
the matrix D4 you have found, D4X(f) provides the correct nodal values of
the derivative of f when f is one of the functions 1, cos(2wz/L), sin(2xz/L}),
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cos(4rz/L). What is the situation when f(z) = sin(4nz/L)? Find D4X(f) for
f(z) = cos(2mnz /L) or f(z) = sin(2rnz/L) and explain the results in terms of
aliasing. Compare the entries in Dy with those of the 4 x 4 matrix that arises
from standard central differences (this is the negative of the matrix in (6.3¢)).

9.3 The pseudospectral method for periodic nonlinear problems

Both the Galerkin and pseudospectral methods presented in Sect. 9.1 can be ex-
tended outside the class of periodic, constant coefficient, linear problems (Canuto
et al. 1988 Gottlieb and Orszag 1977). The extension is much easier for the pseu-
dospectral case and we therefore only consider pseudospectral methods.

To see how this extension, first suggested by Kreiss and Oliger in 1972, works,
let us first look at the example of the heat equation 8;u = Oy u. The pseudospec-
tral solution (9.3) is

N
"

ulf(z,0) = Y exp(Art)indn(2)-

n=—N
Denote by U(t) the M-vector of grid values of :Q at time {. Obviously

N

u(t) = M

n=—N

n

exp(A2)a2 X (dn) (9.8)

and

2
WCS = 3 X exp(M0EX(4n). (9.9)
n=—N

Now, from (9.8), U(t) has discrete Fourier coefficients exp(A2t)a2, so that com-
paring the right-hand side of (9.9) with (9.7) we see that this right-hand side is
none other than DU(t). Therefore, (9.9) may be written in a simple form:

d
L = p@
ZU(®) = DPU().

This is very similar to a time-continuous finite difference scheme of the format
(6.2); the only difference is that instead of a (sparse) finite-difference matrix we
now have a (fuli) pseudospectral difference matrix. The pseudospectral matrix
differentiates exactly all Fourier modes below the Nyquist limit. As the grid is
refined more modes are differentiated without error.

This example gives the key to writing pseudospectral methods for problems
that, while being periodic, have variable coefficients or are nonlinear. One consid-
ers as unknown a vector U(1) of grid values and one writes a system of differential
equations

(d/dtU(t)) = F(t, U(1)), (9.10)
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for U(t). The right-hand side function F is constructed from the cwﬂsw_ dif-
ferential equation being solved by replacing the derivative operators .mn by the
matrices D) (or D¥). For instance, for the Korteweg-de Vries equation,

Q.: = ||“me.=& - mhhﬂﬂ.

a pseudospectral scheme (Frutos and Sanz-Serna 1992) would have F given by

the nonlinear function
F(V)=-3DV? - DV,

where the vector V2 is obtained by squaring the entries of V.

In (9.10) the variable ¢ is still continuous so that one has to integrate in
time by some numerical method for ordinary differential equations (Sect. 7.1.1).
An automatic package from a mathematical software library may be a sensible
choice, but one also may consider some home-made algorithm. In any case one
should be careful because (9.10) is both stiff and full. With any time integration
method one may chose, one needs to be able to write a subroutine that evaluates
the right-hand side function F at any given vector V. In the Korteweg-de Vries
example, the multiplications by D?® and D are carried out by FFT as discussed
in Sect. 9.2.1. The right-most Fy' implicit in D (see (9.6)) and in D® can be
taken as a common factor. Then the evaluation of F requires two transforms and
an inverse transform, plus M multiplications to find the entries of V2 and 2M
additional multiplications by the diagonal entries of A and A3

In practice it may be better not to use the system (9.10) directly. One
rather performs the time integration in terms of the transformed vector U(t) =
PFyU(t), whose entries are, except for a normalizing factor M, the discrete
Fourier coefficients of the solution. From (9.10), the transformed vector satisfies

the differential system

d - ~ _
MCQV = m;Q, GQVV_

with _ ~
F(V) = PFyF(Fy' PV).

In the Korteweg-de Vries example, the new right-hand side function F is

PFyE(Fy; PV) = PFy (-3DV? = D*V),
= _3APFyV? - AV
where ) _
V = Fy' PV. (9.11)

Therefore when the system is written in terms of the transformed vector, an eval-
uation of the right-hand side function F demands an inverse Fourier transform
(9.11) to find the nodal values V from discrete Fourier coefficients, M multi-
plications to find the entries of V2, a further discrete Fourier transform to find
FpV? and the 2M multiplications by the diagonal entries of A and A3. This
saves a transform when compared with the evaluation of F.



198 J.M.Sanz-Serna

The main limitation of the Fourier pseudospectral approach is the restriction
to periodic boundary conditions. Finite differences may cope successfully with
any boundary condition. Pseudospectral methods based on polynomial rather
than trigonometric basis functions of course exist (Canuto et al. 1988; Gottlieb
and Orszag 1977) and can deal with nonperiodic boundary conditions.

The good news is that the rate of convergence of Fourier pseudospectral
methods is only restricted by the smoothness of the solution u. For very smooth
solutions errors are exponentially small as Az — 0. This is to be compared with
the situation for finite differences where the error is never better than O(Az?),
with p determined by the specific scheme being used.

In my experience (Abia and Sanz-Serna 1990; Frutos et at. 1990, 1991; Fru-
tos and Sanz-Serna 1989, 1992) the superiority of spectral methods over finite
differences or finite elements is dramatic. Let me report an experiment (Abia
and Sanz-Serna 1990). The equation being integrated is nonlinear and describes
waves in a fluidized bed. A pseudospectral method, with accurate time integra-
tion, yielded an error of 6 x 10-3 when M = 4. The error is reduced down to
1 x 10-5 when M is doubled (M = 8). This is an error reduction by a factor
600! A second order finite-difference scheme had with M = 32,64,128 errors of
3% 1072, 7x 10-3. 1 x 10~3. Here the error is only divided by a factor of about
4 when M is doubled. Note also that finite differences with M = 128 (CPU time
13 seconds) are 100 times less accurate than the pseudospectral method with
M = 8 (CPU time 7 seconds).

T

AT

Exercise 46 Write a program for the pseudospectral method for the Korteweg-
de Vries equation. Use the classical Runge-Kutta formula for the integration in
time (Lambert 1991). Write a program based on finite differences and compare
with the pseudospectral method.

I am thankful to J. de Frutos who helped me with the preparation of the
manuscript. 1 have been supported by grant DGICYT PB92-254.
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Abstract: Algorithms for the generation of pseudorandom numbers with normal and
exponential distributions are described here. No transcendental functions need to be
evaluated; furthermore, only two uniform deviates per generation are required; no tables
are used. These algorithms are much faster than other exponential and normal random

number generators.

1. Introduction

Many simulations in computational physics require random numbers with a given
distribution. Exponential and normal distributions are often needed. Existing
random number generators are often inaccurate and they are time consuming. 1t
has been shown recently that the inaccuracy issue can sometimes be reasonably
serious [1]. Exponential and normally distributed random numbers are gener-
ated particularly slowly because one or more transcendental functions and/or
several uniform deviates must be evaluated for each random number generated
[2,3]. New algorithms for the generation of pseudorandom numbers with normal
and exponential distributions are described in this lecture. No transcendental
functions need to be evaluated; furthermore, only two uniform deviates per gen-
eration are required. Its accuracy is easy to control. No tables are used. It is
much faster than other generators.

As part of an introduction for students who are unfamiliar with this subject,
one of the simplest methods to generate exponentially distributed random num-
bers is explained next. Take a random number z (supplied, for instance by a
built in generator in your computer), distributed uniformly in the interval (0,1),
that is, P(z) = 1, for 0 <z <1, and P(z) =0, for £ <0 and z > 1. There is a
function y(x) that transforms the uniform deviale z into the desired ezponential
deviate y; it must fulfili

P(z)|dz| = P(y)ldy| (11



