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1. Introduction

This is a short summary of my oral presentation at the Zurich International
Congress of Mathematicians. The presentation was aimed at providing an casy
introduction to the field of symplectic numerical integrators for Hamiltonian prob-
lems. Some sacrifices in rigor and precision were deliberately made.

We are concerned with initial value problems for systems of ordinary differ-
ential equations

W_jw), 0<tsT. y0)=acRP (1)
where f is a smooth function. The basic theory of numerical methods for (1)
has been known for more than thirty years, see e.g. [8]. This theory, in tandem
with practical experimentation, has led to the development of general software
packages for the efficient solution of (1). It is perhaps remarkable that both the
theory and the packages do not take into account any structure the problem may
have and work under virtually no assumption on the (smooth) vector field f. This
contributes to the elegance of the theory and to the versatility of the software.

However, it is clear that a method that can solve “all” problems is bound to
be inefficient in some problems. Stiff problems [9], frequent in many applications,
provide an example of problems of the format (1) where general packages are very
inefficient. Accordingly, a special theory and special software have been created to
cope with stiff problems.

Are there other classes of problems of the form (1) that deserve a sepa-
rate study? In recent years much work has been done on special methods for
Hamiltonian problems. Of course, Hamiltonian problems [11] play a crucial role as
mathematical models of situations where dissipative effects are absent or may be
ignored. Most special methods for Hamiltonian problems are symplectic methods;
other possibilities, not discussed here, include reversible and energy-conserving
methods [16]. Early references on symplectic integration are Channell [4], Feng
(5], and Ruth [12]. In the last ten years the growth of the “symplectic” literature
has been impressive, both in mathematics and in the various application fields.
The monograph [16] contains over a hundred references from the mathematical
literature. The second edition of the excellent treatise by Hairer, Ngrsett, and
Wanner [8] includes a section on symplectic integration.
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In the talk I presented several examples, taken from mathematics [16], as-
tronomy [20], and molecular dynamics [6] that illustrated the practical advantages
of symplectic integrators when compared with general software.

2. Symplecticness

For our purposes here, a Hamiltonian problem is a problem of the form (1) where
the dimension D is even, D = 2d, and the components f; of f are given by
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for a suitable real-valued function H = H(y) (the Hamiltonian). It is standard
notation to set p; = ¥, ¢ = Ya+i, ¢ = 1,...,d, and then the Hamiltonian system
with Hamiltonian function H reads

dpi _ OH  da; | OH

dt 6(]17 dt +(9p2’ ? 3 3 (3)

Whether a system of the form (1) with D = 2d is Hamiltonian or otherwise
can be decided [1] by the symplecticness of its flow. Recall that, for each real ¢,
the t-flow ¢; of the differential system in (1) is the mapping in R” that maps cach
a € RP into the value y(t) at time ¢ of the solution g of the initial value problem
(1). A symplectic transformation ® in R2¢ is a transformation that preserves the
differential form

w=dpy Ndg1 + -+ +dpg N dqq.

When d = 1 preservation of w is simply preservation of oriented area: a smooth ®
is symplectic if and only if for each oriented domain D in R?, ®(D) possesses the
same area and orientation as D. For d > 1, preservation of w means preservation
of the sum of the two-dimensional oriented areas of the projections onto the planes
(piyq:i), i =1,....,d, of oriented two-dimensional surfaces D in R2%.

For each t, the flow ¢; of (3) is a symplectic transformation. Conversely if (1)
(with D = 2d) is such that, for each ¢, ¢; is symplectic then (1) is a Hamiltonian
problem, in the sense that a scalar function H may be found such that (2) holds.
The conclusion is that the symplecticness of the flow characterizes Hamiltonian
problems. In fact, all qualitative properties of the solutions of Hamiltonian systems
derive from the symplecticness of the flow.

When solving (1) with a one-step numerical method, the true flow ¢a; is
replaced by a computable approximation 1a;. For instance, for the standard Euler
rule ¥a;(y) = y+ Atf(y). For an order 7 method 1A, is an O(A#" ') perturbation
of pa; as At — 0. The numerical approximation y™ at time ¢t,, = nAt,n=1,2,...,
is computed by iterating the map ¥a;, i.e. ¥ = ¥a;(y™), n = 0,1,.... Then
y" —y(nAt) is O(At") as At — 0, uniformly in bounded intervals of the variable
t = nAt.

If (1) is a Hamiltonian problem, there is no guarantee that a given numerical
method yields a mapping ¥a; that is symplectic. Therefore, in general, numeri-
cal methods do not share the property of symplecticness that is the hallmark of
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Hamiltonian problems. A numerical method is said to be symplectic, if, whenever
it is applied to a Hamiltonian problem (3), it produces a mapping 1a; that is
symplectic for each At.

3. Available symplectic methods

The available symplectic methods can be grouped broadly into three classes.

The earliest symplectic methods were based on the fact that symplectic
transformations in R?? can be expressed in terms of the partial derivatives of
a real-valued generating function. For the true flow ¢a;, the generating function
is a solution of the Hamilton-Jacobi equation, and by approximately solving the
Hamilton-Jacobi equation one constructed the generating function of the numeri-
cal method 1 a¢. The methods obtained in this way require the knowledge of higher
derivatives of H and tend to be cumbersome.

Lasagni [10], Suris [19], and I [13] discovered independently that standard
classes of methods, like Runge-Kutta methods, include schemes that just ‘happen’
to be symplectic.

The third class of symplectic methods is built around the idea of splitting.
It is required that the Hamiltonian H of interest may be decomposed as a sum
H = Hy+---+ H, such that the Hamiltonian systems with Hamiltonians H; may
be integrated in closed form, so that the corresponding flows ¢at g, i =1,...,s,
are explicitly available. These “fractional” flows are then combined to produce an
approximation ¥as g t0 ¢ar,m. When s = 2, the simplest possibility is to set

VALH = QAL HyDALH,-

This provides a first-order method that is symplectic: ¥a; 7 is a composition of two
Hamiltonian flows, and hence of two symplectic mappings. Higher-order splittings
exist; for instance the second-order recipe

YatH = Oaty2, 0, OatH, OAL)2, H,

goes back to Strang [18], and Yoshida [21] has developed a way of constructing
splittings of arbitrarily high orders.

4. Discussion

In which way are symplectic methods better than their conventional counterparts?
The standard criterion for determining the merit of numerical methods for (1) is
as follows. One measures the error |y — y(nAt)| (numerical minus exact) at some
prescribed time ¢ = nAt; method A is then an improvement on method B if A
attains a prescribed error size with less work than B. There is some evidence
suggesting that symplectic methods may be advantageous when this standard
comparison criterion is used. For instance, it is possible to show [3] that, in the
integration of the classical two-body problem, symplectic integrators have errors
whose leading terms in the asymptotic expansion grow linearly with ¢; the error
in conventional methods grows like ¢2.
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However the standard criterion described above may not be a sensible choice
in many instances. Sometimes numecrical integrators are used to get an indica-
tion of the long-time behavior of a differential system [14]. When ¢ is large all
numerical methods are likely to produce approximations y™ that differ signifi-
cantly from y(nAt); therefore all methods would be regarded as bad with the
standard criterion. This is particularly clear in cases, including chaotic regimes,
where neighboring solutions of the system diverge exponentially as t increases
and hence numerical errors also increase exponentially. It is then useful to derive
new alternative criteria to judge the goodness of numerical methods in long-time
integrations, see e.g. [17].

An idea that has recently attracted much attention [16], [2], [15], [7] is that
of backward error analysis. In numerical analysis, given a problem P with true
solution § and given an approximate solution S, forward error analysis consists of
estimating the distance between S and S. Traditionally, error analyses in numerical
differential equations are forward error analyses. Backward error analysis consists
of showing that S is the exact solution of a problem P that is close to P. Let
1,5 be a numerical method of order r > 1 for the integration of (1). Given any
large integer N, there is an autonomous vector field f , that depends on N and At,
such that Yayr — dp, 7 = O(AtN*+1) as At — 0. This means that the numerical
solution, that is an approximation of order r to the solution of the problem (1) we
are trying to solve, is an approximation of order N >> r to the perturbed problem

W_Fw) 0<t<T.  y0)=acRr”. @
Ignoring O(At") terms, the numerical solution is really solving the modified prob-
lem (4). Here f = f + O(At"), so that the higher the order of the method, the
closer the modificd problem is to the true problem (1). In any case, if the discrep-
ancy between f and f is of the same size as the uncertainty in f that results from
modelling errors, experimental errors in measuring the constants that may feature
in f, etc., then we are sure that there is nothing seriously wrong in solving (1)
numerically.

In this connection, it turns out that if the numerical method is symplectic
and (1) is Hamiltonian, then (4) is also a Hamiltonian problem. In this sense, a
symplectic integrator changes the problem being solved by slightly altering the
Hamiltonian function H; a general integrator changes the problem being solved
by introducing a non-Hamiltonian perturbation.
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