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Gray and Verosky have recently studied the reformulation of the N-state matrix representation of the
time-dependent Schrodinger equation as an N-degrees of freedom classical Hamiltonian system.
This opens the possibility of using in quantum dynamics numerical integrators originally devised for
classical mechanics. When the Hamiltonian matrix is time-dependent, Gray and Verosky suggest the
use of a Magnus approximation before reducing the quantum system to its classical format. We
show that Magnus approximations are not necessary and suggest an alternative technique. With the
new technique it is possible to obtain simple integrators of arbitrarily high orders of accuracy that
can be applied to all matrix Schrodinger problems with a. possibly time-dependent, real Hamiltonian
matrix. The connection between the new approach and high-order split-operator methods is
studied. © 1996 American Institute of Physics. [S0021-9606(96)01306-7]

1. INTRODUCTION

Gray and Verosky' have recently studied in detail the
reformulation of the N state matrix representation of the
time-dependent Schrodinger equation as an N-degree of free-
dom classical Hamiltonian system. This reformulation has
several interesting implications; for instance, it makes pos-
sible to use in quantum dynamics numerical integrators
originally devised for classical mechanics, including sym-
plectic integrators.” However, when the Hamiltonian matrix
in the quantum problem is time-dependent, the resulting clas-
sical Hamiltonian system is not separated and explicit sym-
plectic integrators cannot be directly applied. Gray and
Verosky suggest the use a Magnus :.v«pproximation3‘5 before
rewriting the quantum system in its classical format. In this
paper, we show that Magnus approximations are not really
necessary and suggest an alternative technique. With the new
technique it is possible to obtain simple integrators of arbi-
trarily high orders of accuracy that can be applied to all
matrix Schrodinger problems with a, possibly time-
dependent, real Hamiltonian matrix.

Section I describes the new technique. Section III is
devoted to a numerical illustration concerning a diatomic
molecule in a strong laser field. The new technique is found
to vastly outperform the Magnus approximation approach.
There is a connection between the techniques suggested here
and (high-order) split-operator integrators:® this connection
is explored in Sec. IV.

1l. SYMPLECTIC PARTITIONED RUNGE-KUTTA
METHODS FOR SCHRODINGER EQUATIONS

In matrix form, the time-dependent Schrodinger equa-
tion is :

d .
it Zc(t)=H(r)c(l). n
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where c(r) is a column vector with N complex components
and the Hamiltonian H(r) is an NXN Hemmitian matrx.
Equation (1) arises when describing a system with N inter-
acting states, with ¢(r) representing the coefficients in a basis
set expansion. Also (1) results from discretization of the spa-
tial variables in the Schrodinger equation

it % ¢(r)=f1(1)1,b(t). )

[E’(r) is the Hamiltonian operator]: then the entries of ¢(r)
are values of the wave function ¢{r) at the nodes of the
spatial grid. Gray and Verosky' (see also references therein)
introduce two real N component vectors

p(1)=v27 Imct), q(r)=+2h Re c(r) (3)

and point out that they obey the classical Hamilton equations
of motion®

d oH d N oH .
P 7% @ T p )
corresponding to the real-valued Hamiltonian function
! T .7 . -
H(p.q.) =5 (g —ip)H(1)(q*ip). &)

In this way the quantum problem (1) may be seen as & par-
ticular instance of the classical equations (4).

The main feature of any classical system of the form )
is® that its solutions preserve the Poincaré invariants, or, in
more up-to-date (but equivalent) terms, that its solution op-
erator is symplectic. When classical systems of the form (4)
are numerically integrated, it is often advisable to use a sym-
plectic integrator, i.e., an integrator that also preserves the
Poincaré invariants. Most symplectic integrators are implicit
and require, at each time step, the solution of a system of
algebraic equations. Explicit symplectic integrators are pos-
sible for separated Hamiltonian functions H of the form

H(p.q.t)=H,(p)+H:(q.1). (6
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This format is quite common for classical systems, but. as
discussed below, does not arise when studying time-
dependent quantum systems. The simplest examples of ex-
plicit. symplectic numerical methods for separated Hamil-
tonian systems (6) are given by partitioned Runge-Kuita
(PRK) methods.>?~!! Each explicit. symplectic PRK method
is specified by two arrays of real coefficients

(bl'bl ..... I)J)[BI‘B: ..... B:] (7)

If the steplength is k. then a step 1,—1,. =, +k of the
PRK method (7) applied to the system with Hamiltonian (6)
is given by

Qn.0= Q.
Pn.l =Pu-
for i=1.....s,

1

kB dd P

L= . + kB — .

Q'l.l Qn.1~l i op ( n.l)v

S

P P, —kb, 2 +Cik) ¥
ni+1= Fai i “3q (Quivth k)

qn+l=Qn,.\"

pn+|=Pn.s?l'

Here Q,, ; .P, ; are intermediate stages and
C;=B,+B,+---+B,.

The whole algorithm only requires the storage of two
N-dimensional real vectors (one for the p variables and one
for the ¢ varables). The coefficients in (7) are chosen to
increase  the order of accuracy r defined by
p.=pit,)+O(h"). q,=q(r.)+O0(h") and to reduce the size
of the error constants impiied in the O(:1") symbol. By in-
creasing s. and therefore the work per step. it 1s possible to
reach arbitrarily high orders of accuracy. The intermediate
stages O, ; may be viewed as approximations to q(z,+ Ck)
and the stages P,; may be viewed as approximations to
pli,+c;k) with

ci=bytbyte-tb,

(¢;=0). However the stages should not be used to output
solution values at off-step points r, + C;k,1,,+ ¢k, because
the approximations they provide are of an order of accuracy
lower than the order r achieved at the step-points f,.
Gray and Verosky' integrate the Schrédinger equation
(1) by first rewriting it, via (3), in the classical form (4), (5)
and then integrating the classical equations with a symplectic
integrator. They focus on the case where the matrix H in (1)
is real valued. Then the classical Hamiltonian function (5) is

1
H(p.q.n= 5+ [pTH(n)p+q H{1)q). (9)

If. furthermore, H does not depend on ¢ explicitly, then the
classical Hamiltonian function (9) possesses the separated
format (6) with
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= pT Y

1 2ﬁPHp, H2~§7l'q q ’
and. as pointed out above, explicit symplectic integrato}s are
applicable. In particular the application of (7)~(8) leads to

the algorithm

Qn.0=(ln~
Pn.l:pn .
for i=1...., s.

kB
Ql‘lJ:Qll,l‘ { + _ﬁ— HPI!.[*
P,.1=P, - iy "
ni~1"7"4ni T Qn.i’
qn-‘»len.:v
pn—lzpn.sﬂ‘-I’

This provides a simple integrator for (1) (H real and time
independent) that, per step, only requires the computation of
2s N-dimensional real matrix-vector products HP, ; HQ, ;.
This algorithm is particularly appealing! when the problem is
so big that memory limitations matter or when the problem is
so small that programming a more efficient, but more com-
plicated, algorithm is not worthwhile. Also note that (10) is
well suited to vector machines. In most other circumstances,
for time-independent H, more sophisticated propagators such
as the short iterative Lanczos algorithm and especially the
Chebyshev propagator should be used.'

When H is real valued but depends explicitly on 1, the
classical Hamiltonian function H in (9) is not separated and
the PRK algorithm (8) is not directly applicable. To circum-
vent this difficulty. Gray and Verosky use the Magnus
approximation.” = i.e.. for t,<1<y1__,.they replace (1) by a
problem

d —
. Y= H P
ih = c(r)=H,"c(1), (1

where the time-independent matrix ﬁf_,"' (the Magnus ap-
proximation of order p=2) is such that the solution operator
expl—i(r, -y —1,)H” /1] of (11) approximates the true solu-
tion operator B(r,_,7,) of (1) [Ps,_,.1,) is the complex
NX N matrix that maps c(z,) into c(z,.)]. For the Magnus
approximation of order p,

expl —i(ty =t )HP IR =D(1, | 1,)+ O(RP™ ).

The lowest (p=2) Magnus approximation is simply given by
the average

LS
ﬁ;{”=:—_ f “"H(1)dr: (12)
"!
higher-order Magnus approximations involve the computa-
tion of integrals of commutators of H(r) and may be rather
messy in realistic problems. By applving the PRK method
(7) 10 the classical Hamiltonian system arising from (11).
Gray and Verosky obtain the integrator
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Qn.0=qn J
Pn.l= Pn.

for i=1,....s,

kB, - |
Qn.i= Qn.i— i + T H:.I’ Pn,i y

b, _ (13)
P, i-1=P,;— Tl H'Q,.
qn+1 =6h.s .
pn‘l=Pn..\'f1v

which reduces to (10) in the particular case where H is time
independent. Clearly (13) has order of accuracy min(r,p),
where r is the order of (7) and p the order of the Magnus
approximation being used. If, as in Ref. 1, one chooses for
simplicity p=2, then the order of accuracy of (13) is at most
2. even if a high-order PRK formula is being used. In fact,
Table I in Ref. 1 reports results corresponding to PRK meth-
ods with r=2 and r=3 which show that, when k is reduced,
the errors behave as O(k?). Numerical results reported in
Ref. 1 show that (13) may be competitive with other tech-
niques for the integration of (1) with time-dependent H. Note
that in this case the Chebyshev method is not applicable (but
see Refs. 13 and 14).

Here we suggest an alternative to (13) that does not re-
quire Magnus approximations and retains the order of accu-

" racy r of the underlying PRK method (7).

We consider the time-dependent Hamiltonian function
with (N + 1)-degrees of freedom given by

. 1
Ap.q: 7.4 =57 [pPTH(/p+q'H(ql-<. (1)

where .7 is a momentum like variable and 4 is the conjugate
coordinate. The equation of motion of 7 is
d7  GH

—_— e —— 1’

dr a{i:

which shows that, if initially 7{#y) =1y. then .7=¢. There-
fore, for the p and q variables, the equations of motion aris-
ing from (14) are the same as the equations of motion arising
from (9). The advantage is that (14) is separated, with

H=Hl+g3q

-1 S .
Hy =57 pTH(/)p. Hz=§7qTH(1)—q—C/.

and (8) is directly applicable. The use of (8) gives equations
for advancing not only p.q, but also.” and £. The equations
for £ can be safely discarded because the variable £ does
not feature in the equations for the variables p and q we are
interested in. The equations for .7 simply say that the inter-
mediate stage values of .7 coincide with corresponding val-
ues of ¢. After dropping the .7 and £ variables/equations, we
obtain the following algorithm

Qn.()= q,,
Pn.l=pn .

for i=1....5,

kB,
Qu.i= Qn.i- 1 + T H(ln—*—c:k)Pn.i 4

(15)
Pn.i°l=P

n.i

kb,
—H(t,+CK)Q,..
,l .

Q1= QII,J ’

pn*lzpn.s*l'

This integrator, which as (13) reduces to (10) if H is time
independent. does not require computing averages of H or
higer-order Magnus approximations. The storage is limited
to 2N-dimensional real vectors and, per step, 2s
N-dimensional real matrix-vector products are needed.

The idea of introducing an *artificial” time .7 to reduce
nonautonomous problems to autonomous problems is of
course well known in mathematics and classical mechanics,
see, e.g., Ref. 2. A similar device has recently been used'>!*
in the quantum context; however in these references the ar-
tificial time plays the role of a new spatial independent vari-
able in the Schrodinger equation, while here the artificial
time is a new dependent variable.

Hll. NUMERICAL RESULTS

As in Ref. 1 we use as a test problem the Walker and
Preston’ model of a diatomic molecule in a laser field. The
Hamiltonian operator A in (2) is (assuming units for which
h=1)

R 1 &

H=—7—-——w+ V(x)+Ax cos(wt). (16)

2p dx-
with V(x) a Morse potential V(.r)=D(]—exp(—ax)):. For
an HF molecule, D=0.2251 a.u.. a=1.1741 au., pu=1745

" au. Asin Ref. 1, we take A =0.011 025 au..and-w=0.017 87

a.u. The initial condition corresponds to the HF molecule in
its ground Morse oscillator vibrational state. The wave
packet  x,1) is replaced by its amplitudes
cj(t)=d/(xj.t)(;3x)m at N uniformly spaced points
x;=xo+jAx. We use N=64, x,=—0.8 a.u. and Ax=008
a.u., which guarantees that the amplitudes Cy and Cy are
negligible and periodic boundary conditions may be as-
sumed. This yields a matrix equation of the form (1) with

H(t)=H_, +AX cos(wt)=T+V+AX cos(wr), (17)

where V and X are diagonal matrices with diagonal entrics
V(xj) and x; respectively and T is the kinetic energy matrix.
The application of the algorithms (13) or (15) requires prod-
ucts of known vectors P or Q with the matrices V, X, and T.
For the diagonal matrices V and X, each such a product
requires N real multiplications. The products TP or TQ are
cheaply evaluated by FFT techniques; each of them requires
a real—complex FFT transform. ¥ multiplications in trans-
formed space and a complex—real inverse FFT transform.
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FIG. 1. Efficiency comparison. The horizontal axis corresponds to work
measured by number of pairs of FFT/inverse FFT transforms on
N-dimensional real vectors. The vertical axis is the percent error in the
molecular energy at the final time 100[E pymenca{10007)—E . ,(10007)}
E 13{10007). The Gray—Verosky algorithm (13) is run with steplengths
k=1100, 17200, 77400, 77800 (7750 is unstable). The algorithm (15) sug-
gested here is run with steplengths k=100, 77200, 7400 (750 is unstable).
The SLF method has k=1200....,73200 (77100 is unstable). For the split-
operator algorithm (25), k=750, 7100, 7200 (7725 is unstable).

In our experiments we use a PRK method (7) of order
r=1 with five stages, s =5. It is possible, in a unique way, to
construct a fourth-order PRK method with only four stages.
but the resulting formula, discovered independently by
Forest/Ruth'® and Candy/Rozmus,” has very large error con-
stants and is very inefficient.” The method used here has
been suggested by McLachlan'® and uses the extra stage so
as to reduce the error constant. The coefficients are given by

b=t bi=i=b,. by=bs. bi=bs.

642+ V471
bs=0 Bim g

il

. B.= (12— 471),

BJ=1_2(B|+82)‘ (18)

BJ=BZ, BS=BI’

Note the symmetry in the coefficients that implies the time
reversibility of the algorithm. Note also that the last b; van-
ishes, leading to computational savings. First of all, there is
no need to compute H,‘ZQ,',,S in (13) or H(1,+csk)Q, in
(15). Furthermore, P, .| ;=p,+=P,¢=P, s and thus in (15)
the first product H(7,,,)P,., in the i-loop of the step
I, +1— 1,42 coincides with the last product H(r,+csk)P, s
found in the preceding step (FSAL, first same as last,
property”). When using (13) the first product Hf. Py,
does not quite coincide with the last i_x’f,’P,,.s, because the
Magnus matrix H changes with n; however this change does

not affect the matrix T that is the only requiring FFTs. There--

fore, with the coefficients {18), the algorithms (13) and (15)
only require eight FFT/inverse FFT pairs per step (four to
advance the p's and four to advance the ¢’s).
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We have implemented the Gray—Verosky algorithm (13),
with the weights (18) and the lowest-order Magnus approxi-
mation (12) and also the suggested algorithm (15) with the
same weights. A natural time unit for the problem is =27/
@=2351.6 a.u. or 8.505 fs. The integration is carried out for
0=r=<10007 and the accuracy is measured by monitoring the
errors in the molecule energy E(1)=(c(1)|T+Ve(r)) at the
final time 10007. Figure 1 is an efficiency plot; the novel
algorithm (13), that is simpler than the Magnus algorithm
(13), is also much more efficient. yiclding errors three to five
orders of magnitude smaller for a given computational cost.
The Magnus algorithm only achieves second-order accuracy
in spite of using the fourth-order coefficients (18). Higher-
order Magnus approximations could of course be employed.-
but they would be messy in realistic problems. Also note that
no matter how large p is chosen. there is an error associated
with the replacement of (1) by the Magnus system (11) that
is required by (13). For this reasons, we believe that (15} is
10 be preferred to (13) in all cases. We emphasize that our
technique is not confined to the weights (18) but rather any
explicit, symplectic PRK can be used. The literature™'3 con-
tains examples of coefficients of orders up to 8.

As a further reference integrator, we have used the sym-
plectic leapfrog (SLF) scheme.! This is given by (13) with
p=2. s=2 and the weights

b]:'l. b2=0, Bl':BZ:;_‘ (19)

Since b,=0, an FSAL property holds and. per step 2 trans-
form pairs are required. After comparing in Fig. 1 the SLF
results with those of the algorithms that use the coefficients
(18) the advantages of high-order coefficients are clear.
Gray and Verosky' also report results for this test prob-
lem when using the short iterative Lanczos algorithm and the
split operator algorithm. Those results compare unfavorably
with the results obtained with the algorithm suggested here.

IV. PRK METHODS AND SPLIT-OPERATOR
INTEGRATORS

There is a useful relation between the methods consid-
ered above and split-operator intecrators. Let us consider a
system of (real or complex) differential equations

y

o =f(y)+e(y), (20)

whose right-hand side has been written as the sum of two
contributions. Assume that the partial systems

dy dy

—— = —_—= y 2

. o=y, 2n

can be explicitly integrated. so that their corresponding solu-
tion operators exp(if) and exp(rg} arc known. Then, given
the array of coefficients (7), we can construct the following
split-operator integrator for (20)

Yo+ 1= €xXp(b kDexp(B kg)---exp(bkDexp(B kg)y. .
(22)
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where, over a step of length k, the simultaneous evolution
under f and g that takes place in (20) is replaced by succes-
sive evolutions under g and f over substeps of lengths
B\k,bik,....Bk,bk. If f and g are linear, f(y)=Ly, g(y)
=My, (L and M are matrices), then

2
t
exp(rf)=1+tL+—2—L2+--- ,

- 2
4
exp(tg)=I+tM+ —2-M2+--- .

so that the evolution operators exp(sf) and exp (rg) are bona
fide exponentials. For nonlinear f and g, the interpretation of
solution operators as exponentials is via Lie operators® and is
not needed to understand what follows. By using the BCH
(Baker—Campbell-Hausdorff) formula,>'® the exponentials
in (22) can be combined into a single exponential

Yo+ 1 =exp(akf+ Bkg+ yk*[f.g]+ SK°[f.[f.g]]
+ek’[g.[g.f]]+ ") Ya, (23)

where a,8,v,8,€ are polynomials in the coefficients b,,B;
(for instance a=b,+-+-+b,, B=B;+--+B,) and square
brackets denote the Lie—Poisson bracket, i.e., [f,g] is the
vector-valued function of y whose jth component is

(subscripts denote components) [if f and g are linear and
given by matrices L and M, then their bracket is also linear
and given by the negative —(LM — ML) of the commutator
of the matrices]. By comparing (23) with the true evolution

¥(r, ) =exp(k(f+g))y(t,),

we see that (22) is of order r=1 if a=g=1 (e,
3:b,=%,B,=1), of order r=2 if in addition y=0, of order
r=3 if furthermore 6=€=0,.... In this way, given a target
order of accuracy r, it is possible to derive a system of poly-

nomial equations that the coefficients b; and B; have to sat-

isfy for (22) to be of order r regardless of the specific f and
2. The coefficients in (18) have r=4; the coefficients in (19)
have r=2 and identify the splitting integrator associated with
Strang’s name'? and often used in applications.!* A very im-
portant recent contribution to the theory of splitting methods
1s Ref. 18. .

The system (20) has been assumed to be autonomous
(i.e.. f and g do not explicitly depend on r). Nonautonomous
systems may be integrated with the integrator (22): All that is
required is to first rewrite the system one wishes to integrate

in autonomous form by considering =t as a new depen--

dent variable to be appended to y. This will be illustrated in
the examples that follow.

As a first example, consider an N-degrees of freedom
time-dependent Hamiltonian system (4) with a separated
Hamiltonian function (6). We wish to integrate this system
with the method (22) for a given choice of coefficients (7).

e

"~ " ¥

2353

To rewrite the system in autonomous Hamiltonian form we
introduce the (N+1)-degrees of freedom time-independent
Hamiltonian function '

H*(p.q: 7.7 ) =H(p.q.7,)+7
=[H\(p)+ 7V +[Hy(q.7)]=H} +H],
24

where ¥, is a coordinatelike variable (hence the subscript q)
and 7 is the canonically conjugate momentum. In the equa-
tions of motion,

47, oH*
dt ~ 87

1,

so that 7 =1, provided that initially 7 (¢9)=1ty. The
Hamiltonian system associated with (24) can be decomposed
as

C HY] [ O 7
di qf_ 0 + Jp
di| 2| | 9H} 0
7. o7, dHFf
0 3 L éF
The partial systems (21) are given by
Bith
P aq
d| q 0
dt| & oH¥
7, 07,
L 0 |
and
-0 -
p GHY |~
dl q| | op
aee| 21| o |
74 o
[ 67 ]

and they are also Hamiltonian: they are the systems associ-
ated with the Hamiltonians H3 and H respectively. In the
evolution under H} the momentumlike variables p and 7
remain constant and q and & vary linearly with ¢; such an
evolution is sometimes called a shear flow. In the evolution
under H3 the coordinatelike variables q and 7, remain con-
stant-and p and Z” vary linearly. Once the solution of the

+ partial systems has been found in closed form we may apply

(22). After dropping the auxiliary variables 7, and 7, the
result is none other than the algorithm (8). In this way, each
split-operator integrator induces a PRK method for separated
(possibly nonautonomous) classical Hamiltonian systems.
As a second example, consider now the application of
(22) to the Hamiltonian system with time-dependent Hamil-
tonian function (14) with N+1-degrees of freedom ([this
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Hamiltonian arose when bringing (9) into separated form].
We now introduce the time-independent Hamiltonian with
N+2-degrees of freedom

H*(p.q. 7 G 7 ) =| 57 PTH(.)p+.7

1
27 P
i
+ TH(.7 )a— <.

~

27(]

which is divided into a part independent of the coordinates
and a part independent of the momenta. so that the partial
systems are readily integrable in terms of shear flows. By
applying (22) to this splitting of the differential system. we
obtain the algorithm (15). Therefore rewriting the quantum
system (1) (H real) in classical form (4) and introducing the
auxiliary (14) can be seen as devices whereby any quantum
system with time-dependent Hamiltonian can be brought
within the scope of any chosen split-operator integrator (22),
possibly of high order.

In some cases the given quantum system (1) is already
amenable to the application of splitting integrators: this hap-
pens, for instance, for grid representations of the Schrodinger
equation (2) with an operator of the form [ef. (16)]

-

- 1 ¢

H=- '5;:9';5"!'\/(.{,1).
In these cases. given a set of coefficients (7). one may either
"go to the classical Hamiltonian system and use the PRK
algorithm (15) or apply directly the split-operator scheme
(22) to the quanturn system (1). The use in quantum prob-
lems of the Strang splitting (19) is well known. Higher-order
splittings have also been used®’ (note that the Ref. 7 uses the
terms “‘symplectic integrator™ to refer to split-operator meth-
ods for the quantum system, this is at variance with our
terminology where symplectic methods are integrators of
classical Hamiltonian problems). We illustrated the use of
quantum splittings in the particular case of the test example
{16) used in Sec. III.

The system (1) with H given by (17} is first rewritten in
autonomous form (we assume units for which A=1)

d {c] —iH(f)cz
d[ L‘T 1 j

9
and partitioned as

d|c —iTe] | —i(V+AX cos(w.7))c!
dr 7] I 0 I

Then, (22) is applied and, after elimination of the auxiliary
variable .7, we obtain the algorithm :

C.o=¢Cns
for i=1,..,s,
C, o1 =exp(—iBA(V+AX costwlr, +ck))))
XCpai-2-

C,a=exp(—ibkT)Cpai-y.
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cn+l=Cn_2s . (25)

This requires the storage of an N -dimensional complex vec-
tor; (13) needed two N-dimensional real vectors, which
is of course ecquivalent. The matrices exp(—iBk(V
+AX cos(w(t, +¢,k)))) are diagonal with diagonal entries
exp(—iBA(V(x))+Ax, cos(w(r,+ ¢,k and  therefore
C,2i-1 is easily computed. The computation of C, -, re-
quires FFT techniques to diagonalize exp(—ibkT). Hence
(25) demands, per step. s FFl/inverse FFT pairs on
N-dimensional complex vectors. By comparison, (15) re-
quires 2s transform pairs but deals with real vectors. so that
the cost is equivalent. When b, =0 (FSAL property) there are
computational savings: (23) only needs s — | transform pairs.

For the weights (18). we have implemented (25) on the’
test problem of Sec. I1l. The results can be scen in Fig. 1.
The advantages of splitting the quantum system over going
to the classical system [i.e., over using (15)] are obvious.
However we emphasize that splitting the quantum system is
only possible when the system possesses a particular struc-
ture; going to the classical system and applying (15) is al-
ways possible provided that the Hamiltonian matrix H is real
valued. The superiority of (25). when applicable, over (13) is
no doubt due to the following. In (13) the true solution with
an exponential-like behavior is approximated by a sequence
of shear flows, while in (25) is approximated by a sequence
of true quantum solutions.

We finish this section with some observations. The algo-
rithm (25) is unitary: c,., has. if round-off is ignored. the
same length as ¢, . This is becuuse each of the fractional
steps multiplies C by a matrix of the form exp(—iM). where
M is a real symmetric matrix. Also. if we recover the real
vectors p. q via (3). then (25) implies a svmplectic integrator
for the classical system. This happens because a unitary lin-
ear transformation in N-dimensionai complex space is al-
ways svmplectic when regarded as a transformation of the
2 N-dimensional real space. On the other hand. for {15) the
quantity 2Alc?=ipi°+iqi" is not exactly conserved as the
simulation proceeds. However. it is well known® that sym-
plectic integrators do a very good job at accurately conserv-
ing any invariants of motion the system being integrated may
have and we do not expect significant changes in the length
of ¢. In Fig. 1. for (15) with the coarsest stepsize k =7100.
the length of ¢ at the final time 1000+ deviates from the
initial length in less than 5X107° percent. Therefore, in our
opinion, the fact that PRK methods are not exactly unitary is
not a serious problem.

V. CONCLUSIONS

A technique has been suggested that, in tandem with the
reduction to classical Hamiltonian form suggested in Ref. 1.
allows the construction of simple integrators of arbitrarily
high order applicable to all mawrix Schrodinger problems
with a real. possibly time-dependent Hamiltonian matnix.
Each array of splitting coefficients (7) with order r leads to
such a generally applicable Schrodinger integrator of the
same order. However. for those Hamiltonians that are di-
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rectly amenable to (quantum) splitting, the classical reformu-
Jation is not advantageous and one should directly split the
quantum problem. '

Clearly much additional numerical experimentation is
needed before a definite assessment of the merit of the new
techniques can be made. In particular a comparison on real-
istic problems with the approaches in Refs. 13 and 14 should
definitely be carried out.
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