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1. Introduction

In this paper we derive and test a Runge-Kutta-Nystrdm (RKN) method that
possesses a stability interval that is maximal over all methods that are explicit, sym-
plectic, effectively fourth order and use three force evaluations per step. While the
recent literature on symplectic integration of Hamiltonian systems is very large, see
e.g. Hairer, Ngrsett and Wanner®, Sanz-Serna and Calvo®!, the stability intervals of
symplectic methods have received little attention. This is surprising since symplectic
integrators are primarily useful in situations where highly accurate solutions are not
required and the interest lies in obtaining statistical or qualitative properties. In these
situations the fastest components typically have the smallest amplitudes and need not
be resolved accurately. Then stability is likely to be the factor limiting the stepsize.
There is a second reason why stability intervals may be of interest: a large constant
in any of the terms of the asymptotic expansionof the global error in powers of the
stepsize h is likely to lead to a small stability interval. Therefore by controlling the
stability interval it may be possible to obtain methods with small error coefficients
at all powers of h.
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Molecular dynamics simulations (Allen and Tildesley!) are often carried out with
the simple second order, symplectic, time-reversible (selfadjoint in the terminology
of Hairer, Ngrsett and Wanner® or Sanz-Serna and Calvo'!) Verlet method, which
possesses a scaled stability interval of length 2. This length is known to be (Chawla
and Sharma*) the largest possible for any symplectic, explicit method (regardless of
the order of accuracy). Recall that a numerical method with stability interval of
length L has a stability stepsize restriction 2 < L when applied to the model problem
d?y/dt* = —y. If the method uses m force evaluations per step, then the scaled length
L/m measures how many units of time per force evaluation may be advanced with
the integrator within a stable simulation. Therefore, the Verlet method may well be
the best choice if one is interested in explicit, symplectic integrators of order two.

There is not much point in using symplectic methods of order three: by concate-
nating an order three method and its adjoint one obtains a method of order four
(Sanz-Serna and Calvo'!, Section 8.4.5), so that one may directly consider methods
of order four. Here we construct a Runge-Kutta-Nystrdm (RKN) method that pos-
sesses a stability interval that is maximal over all methods (RKN or not) that are
explicit, symplectic, effectively fourth order and use three force evaluations per step.
The terminology effective order r is taken from Butcher?. It implies that the out-
put of the given method is going to be processed so as to enhance its accuracy and
that the numerical solution after processing possesses O(h") global errors. Lépez-
Marcos, Sanz-Serna and Skeel® have showed how to process order four, symplectic,
time-reversible symplectic methods at virtually no cost. Therefore when designing our
method, it is meaningful to look at its effective order rather than at its conventional
order. .

In Section 2 we review the idea of processing. In Section 3 we study stability
intervals and find the maximal stability interval for explicit, symplectic methods of
effective order four that use three force evaluations per step. We present an interpre-
tation of processing in terms of the eigenvectors and eigenvalues of the amplification
matrix. In Section 4 a method is constructed that realizes the maximal stability
interval. In Section 5 we study analytically the accuracy of the new method. By
comparing the new method with a similar method of conventional order four, we
show that, when designing schemes, the use of the notion of effective order leads to
more efficient integrators than the notion of conventional order. By imposing the
conditions for conventional order many degrees of freedom in the method are wasted.
However it turns out that the new method is less efficient than a related method of
effective order four introduced by Rowlands that uses the Hessian of the potential. It
is shown in Lépez-Marcos, Sanz-Serna and Skeel® that, in many problems, the cost of
evaluating at a given point the potential and the Hessian of the potential is less than
that of two evaluations of the potential. The cost per step of the Rowlands method
(one evaluation of the gradient and Hessian) is significantly lower than that of the
method constructed here (three evaluations of the gradient). Then, even though the
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new method is more accurate per step than the Rowlands method, it is less accurate
per unit of cost. This may well show the interest in investigating further methods
that use the Hessian of the potential. Numerical results are presented in the final
Section 6.

2. Processing

Throughout the paper we consider Hamiltonian functions of the form
1 -
H(q,p)=5p"M'p+V(a), (1)

where the potential V is a smooth function and M is a constant, invertible, symmetric
matrix. The Hamiltonian system corresponding to (1) is given by

9 _Mp, P v). @
The notation Vq means the gradient of V with respect to q. The negative of this
gradient is the force. , .

A one-step method for the integration of (2) is given by a transformation s u
that maps the approximation (GQn,Pn) corresponding to a time level ¢, = nh into
the approximation (Qn41,Pn+1) = ¥n#(Qn, Pn) at the next time level oy Let us
assume that we have been given a method %, 5, that in what follows is called the basic
method. When processing is used, there are two sets of variables being considered.
The first set, that we denote by capital letters (Q,P), corresponds to the values
computed by the basic method; specifically, we compute the sequence AD:.t JPap1) =
¥ u(Qn,Pn), n = 0,1,..., starting from (Qo, Po). The second set of variables (q,p)
is related to the first through a transformation (Q,P) = xnn(q,p). It is the lower
case variables that are seen as the processed numerical approximations to the solutions
of (2). Thus there are three steps involved in the processed algorithm:

1. Preprocessing: Find, from the initial values (q(0), p(0)) the starting values for
time-stepping (Qo, Po) = xa,x(a(0), (0))-

9. Time-stepping: Compute (Qni1, Pnt1) = Y H(Qny Pr)y n=0,1,....

3. Postprocessing: If output at time ¢ = nh is desired, then find (qn,Pn) =
X5 4(Qn, P,), which provides the numerical approximation to (q(rh), p(rh)).

The cost of preprocessing can be ignored, because preprocessing is performed only
once in each integration. Note that

(Qnt1s Prt1) = Xt (PnH(Xh,H(Gny Pn)))
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" and therefore the processed solutions can be interpreted as unprocessed solutions
computed with the method .

Pht = Xiht © Yt 0 X 3)

Processing is of interest if 4, 5 is a more accurate method than ¥n,m and the cost
of postprocessing is negligible, either because output is not frequently required or
because xﬂm is cheaply evaluated. Then, processing provides the accuracy of @_. " at
the cost of the less accurate method thn,r. Lépez-Marcos, Sanz-Serna and Skeel® have
showed how, in many cases, pre- and postprocessing may be carried out at virtually
no cost. The idea of processing goes back to Butcher?. Further references are given
by Lépez-Marcos, Sanz-Serna and Skeel®.

In what follows we always assume that the basic method ¥n.n is symplectic. Then,
formally, the basic method provides (Sanz-Serna and Calvo!!, Section 10.1) exact
solutions of a perturbed Hamiltonian system whose Hamiltonjan function H, is a
perturbation of the true Hamiltonian (1) of the system (2) being integrated. This
is a characteristic feature of symplectic integrators; for a nonsymplectic method the
computed points also lie on the solutions of a perturbation of the system (2), but the
perturbed system is not Hamiltonian. If the preprocessor x g is a canonical or sym-
plectic mapping, then the processed method (3) is also symplectic and then provides
approximations that solve exactly its associated perturbed Hamiltonian system. The

modified Hamiltonian of the processed method is (Lépez-Marcos, Sanz-Serna and
Skeel®)

" Hi(a,p) = B(Q,P) = Ba(xan(q,p)). (4)

The aim of processing is then, given ¥ (ie., given Hy), to find a symplectic trans-
formation x4 g so that the right band side of (4), that drives the processed solution,
is as close as possible to the Hamiltonian H that drives the true solution.

Let us now focus on basic methods that are time-reversible. The corresponding
modified Hamiltonian is of the form (Lépez-Marcos, Sanz-Serna and Skeel®)

H(Q,P) = H(Q,P)
+ B2 PTM aq(Q)M-P]
+ %.w:\o@qk TVq(Q)1+ O(hY), )

Here A and B are method-dependent constants and VQq is the Hessian matrix of V.
The terms in square brackets are so-called elementary Hamiltonians. f A = B = 0,
then NH. and the true H differ in O?Av terms and the basic method has order four;
otherwise the order of accuracy is only two.

Since the preprocessor (Q,P) = x4 u(q, P) = id + O(h?) has to be a symplectic
transformation, it will be the exact solution flow of a Hamiltonjan system. In other
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words, a Hamiltonian function H, has to exist such that (Q,P) is the value at .ﬁBm
k of the solution with initial condition (q,p) of the Hamiltonian system associated
with H,. The expansion of H, will be of the form

Hy = hA[p" M~ Vy(q)] + O(r®),

with A an undetermined parameter; no O(1) nor O(h?) contribution is included be-
cause (5) possesses no O(h) nor O(h®) term. The O(h) term includes the only ele-
mentary Hamiltonian of order two. We conclude that the preprocessor may be sought
in the form (Lépez-Marcos, Sanz-Serna and Skeel®)

Q = q+hAM7Vy(q)] + O(AY),
P = p—h\[Vq(q)M'p] + O(AY), (8)

il

and by substitution in (5) we find, in view of (4), .

Hia,p) = H(q,p)
+ A2 Am - \/v (P" M~ Vyq(@)M ™ p]

+1 (34 2) Vala M V(@] + O(A). m

It is clear that, for the processed method to be of order four, i.e., for the basic method:
to be of effective order four, it is necessary and sufficient that the system A/2— ) = 0,
B2 — X =0 may be solved for A. Obviously this happens if and only if

= -B, va

a condition that should be compared with the condition A = B = 0 for the basic
method to be of order four.

3. Stability Intervals

When the basic method with modified Hamiltonian (5) is applied to the integration
of the harmonic oscillator H(q,p) = (1/2)(p* + ¢?), the computed points satisfy

©=+u — @3

P, n+1 B g{\ P, n !
where M, is the amplification matrix of the method, which should approximate the
matrix

cosh sinh ©)
—sinh cosh
that advances the true solution. For stability, the eigenvalues of M, B.cmw have
modulus < 1. Since the method is symplectic, det(My) = 1, and then it is well
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known that stability is equivalent to M, having trace of modulus < 2. When this
condition is satisfied, both eigenvalues have unit modulus. ,

Our aim is to discuss the stability of methods that are explicit, symplectic, time-
reversible, use three force evaluations per step, and are effectively of order four. What
does the trace of My look like for those methods? For explicit methods the entries
(and hence the trace) of My are polynomials in h. For an explicit method using m
force evaluations per step the trace is a polynomial P(z) of degree < m in the variable
z = h%: the formula for updating q will have nested evaluations of the force and each
evaluation brings along a factor A% It remains to ascertain how the coefficients of
P(z) are constrained by the requirement of effective order four. The expansion of
M, in powers of h may be easily found if we recall that a step of the basic method
is equivalent to advancing h units of time with the true solution of the modified
Hamiltonian (5), which for the harmonic oscillator reads

.(Q,P) = W (1 + ARDP? + (1 + BEYQ?) + O(hY).
In this way we find

u —2 4+ (H-4B)r +0(r%)  h+(=L+A) K +O(RY)
v =

~h+ (1 ~ B) K + O(h®) — 24 (& - A2 rt+O(he)
From here, we see that the condition (8) for effective order four is equivalent to
B4
trace(My) = 2 — h® 4 .H.m + O(h®). (10)

Summing up, if the basic method is explicit, uses three evaluations per step and is of
effective order four, the trace of M, is of the form

Nn

wANva|N+mm+QNu. z = h?, (11)
where « is a free parameter. Let us determine a so as to have the largest stability
region. For a = 0, P(z) is a parabola with a minimum value P(6) = —1; stability

is lost at z = 12 when P = 2. If a > 0, then, for z > 0, the graph of P is strictly
above the a = 0 parabola. Hence a > 0 is less stable than a = 0. For a < 0 and
close to 0, the graph of P(2) intersects the line P =2 at 20 =0, z; 12, and z, > 1
and the line P = -2 at 23 > z;. Stability is then restricted by the intersection at z;.
As o decreases away from 0, 2, increases (thereby increasing stability) and z; and z;
decrease. When «a reaches the value —1/576, the points 2; and z, coalesce and the
equation P = —2 has a unique real root z3 &3 32.3, so that stability is restricted by
the intersection at z3. A further decrease in « implies a decrease in 23 and hence in
the length of the stability interval. Therefore the longest stability interval occurs at
a = —1/576 and the optimal trace is

Plz)=2~2+4+ = - — 2= (12)
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The stability interval has length L ~ 5.69 and scaled length L/3 ~ 1.89. This is
within 5% of Verlet’s optimal 2.

So far we have just discussed the stability of the basic method tn,u. What is the
stability interval of the processed method d\w? u? It is clear that it should be the same
as that of the basic method, because it is really the basic method that is being used
to propagate the numerical solution. From a more mathematical point of view, we
note that from (3), the amplification matrices of the basic and processed methods are
related through

Mj = M7'MyM,, (13)

where M, is the matrix that, for the harmonic oscillator, transforms the variables
(¢, p) into the variables (Q, P). Thus M3 and My are related by a similarity trans-
formation and have the same eigenvalues and the same stability properties.

We close this section with two comments on the relation (13). If we think of Yo
as given and try to find an optimal processor XhH, We see from (13) that, for the
harmonic oscillator, the most we can achieve by processing is to change the eigen-
vectors of My into the exact eigenvectors, i.e., into the eigenvectors of (9), without
changing the eigenvalues. The eigenvectors of the amplification matrix govern the
shape of the numerical trajectories on the (4,p) plane; the eigenvalues governs the
phase of the numerical solution on its trajectory. Similar considerations apply to any
linear problem. .

Since M, and M have the same trace, if Pan is of order four, then the trace
of My differs from the trace 2cos & of the exact (9) in O(A®) terms (a fourth-order
scheme introduces O(h®) errors in one step). The trace is even in h, so that actually

trace(My) = 2cos h + O(h®). This provides an alternative derivation of the formula
(10).

4. Constructing the Method

We now show that the optimal trace polynomial (12) can be realized by an ex-
plicit, time-reversible, symplectic RKN method using three function evaluations per
step. For three evaluations one may choose between two formats. In the first, the
method has three stages. In the second—which we choose—the method has four
stages but possesses the FSAL (first same as last) property, whereby the last force
evaluation of the current step provides the first force evaluation to be used at the next
step. For time-reversible methods choosing between both formats is just a matter of
convenience, as we will discuss later.

With the requirements of symplecticness and time reversibility, an explicit, four-
stage, FSAL RKN method is given by (Okunbor and Skeel?, Sanz-Serna and Calvol!,
Section 8.5) .

P! = P-4 Aw - @v Va(Qx),
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L= Quth(3-0) MR,
PI = Pl hbvg(Q)),
I = QL+ 2mMIP,
P, = Pl -hVq(Q)), |

1
Qi1 = Qi+h Am - QV MR,
1
Poy = P34 Am - @v VQ(Qni1), (14)

where v and b are free parameters. In the compact notation of Sanz-Serna and
Calvo!!, Sections 8.4, 8.5, this method is described as

1 1
AMIQ.MQ.M IQ.SW Cmv

the coefficients of the first group are used for the p variables and those of the second
group for the ¢ variables. The square brackets surrounding the p coefficients indicate
that the first updating in (14) affects the p variables.

Note that if we define Q) = QL + AyM~'P2, P, = P2, then (Q,P") is an
approximation to the solution at t = (n + 1/2)h, i.e., halfway through the step.
Furthermore it is trivial to check that the transformation ( wPL) = (Qh, Phyy)
that maps one halfway approximations into the next is in fact a RKN step with the
method

1 1
—MIQ.Q,Q,MI_-Sv

Q.. 1- MF @. Ov. T.W -7 W e \L, va
that only has three stages (see formula (8.19) in Sanz-Serna and Calvo'!). There-
fore the four-stage, FSAL method (14) is related through the change of variables
(Qn,Pn) — (Q;, Pr) to the three stage method (16). By considerations similar to
those we presented towards the end of the preceding section, both methods then have
the same stability properties. This proves that when looking for RKN methods that
realize the optimal trace polynomial, the two formats mentioned above (three stages
or four stages with FSAL) are equivalent.

After applying the method (14) to the harmonic oscillator, we find that the trace
of the amplification matrix is given by

1 b ). ¥ 2,3
2—242b(1-2y) 1 3%3)? IMGImSQCIwQVN.

and, after comparing with (12), we have to consider the system

1 b 9 1
25(1 - S —ct —
t-m(1-5+1) = &, ()

nma —2)y(1-29)? = n.m.w.m. (18)

]

2

7

This has the solution

2 + Mw\w +Mlu\u

1 =913 __9-1/3
Yopt = T 06756, bt =

6

We recall from Section 4 that (17) is necessary and sufficient for effective order four.
Hence the method (14) with parameter values (19) provides an explicit, symplectic,
time-reversible RKN method with effective order four and optimal stability interval.

A final observation. From (19), bo,t = 1/2 = 7oy and therefore the compact
notation (15) of the optimal method can be also be written as

1 1
T\ou: 9~ Yopts 5~ Yopts QovL. ,?ov: 1 = 2bopt, bopt, 0).

~—0.1756.  (19)

Comparison with (16) shows that the optimal method for the three-stage format can
be obtained from the optimal method in the FSAL, four-stage format by swapping
the roles of the Q and P variables.

5. The Accuracy of the New Method

It is of interest to compare analytically the method (14), (19) with other explicit,
symplectic, time-reversible, (effectively) fourth-order methods.

To simplify the discussion we assume that the methods are applied to a linear.
Hamiltonian problem with potential V(q) = (1/2)q7Sq, where S is a constant stiff-
ness matrix. Then the modified Hamiltonian H}, of the unprocessed method is of the
form (Lépez-Marcos, Sanz-Serna and Skeel®)

A(Q,P) = H(Q,P)
+ %W_EE-GELE

+ %..w._oqu-ﬂmo_
+ ﬁm?HELmi-GE-j
+ i.w._oqwk-“ma-_mp_ + O(RS).

Here A, B, C and D are method-dependent constants. This differs from the earlier
expansion (5) in that we have substituted for the Hessian of V' its current constant
value 5 and we have displayed the O(h*) terms in the expansion. Recall from (8)
that, since we are dealing with methods of effective order four, we may set A = —B.
The transformation xsx is sought in the form (Lépez-Marcos, Sanz-Serna and
Skeel®)
\/»

Q = q+KAMISq+ k(S +p ) MM S+ O(R?),
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Table 1. Error constant and stability interval of effectively fourth-order methods

Method Error constant £ Stability Interval L
FRCR unprocessed 0.054 1.57
FRCR processed 0.047 1.57
Optimal stability (processed) 0.00037 5.69
Rowlands (processed) 0.00098 3.46
\/u
P = vl\%»_.wguﬂ~&+~x 7 Tk ~%§|~%§|HE+OQ~J.

Again this differs from the earlier (6) in that we have substituted for V and displayed
the O(h*) terms. By substituting as required by (4), we find

m‘.TH Vv = .NNAQ. mvv
+4 (5 - 3) 7M1 p)
A
—R? Am - \/v [a"SM™15q]

Q .
+ bt Aw +ATZ AN tv "M SM-15M-1p]

D
+ A4 Aw +22 - AN+ :v [a"SM™ISMSq] + O(r).

Clearly we have to set \ = A/2 to achieve a processed method &?t of order four.
mdn:.ummaog. as in Lopez-Marcos, Sanz-Serna and Skeel®, we set u = (C—~D)/4 so
as to minimize

Q 2 b 2\ 1/2
E= A.w. »u:\:ntv +AM+%1§+§V . (20)

a measure of the size of the O(h*) error coefficients in the Hamiltonian H » of the
processed method.

We now study the error constant and the stability interval of different methods.
We first (Table 1) do so without taking into account the work per step and then
(Table 2) report values scaled by work.

In Table 1 we have provided the size of the error constant (20) and the length
of the stability interval. The acronym FRCR refers to the three-stage, fourth-order,
symplectic RKN method constructed by Forest and Ruth® and Candy and Rozmus?,
This is the only RKN method that with three stages achieves order four. It has been
noted before (Sanz-Serna and Calvo!l, Section 9.1) that FRCR possesses large error
constants. We now see in the table that its stability interval is short, The method
only benefits slightly by processing.
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Table 2. Scaled error constant and scaled stability interval of effectively fourth-order methods
|l Method Error constant mE/* [ Stability Interval L/m 1
FRCR unprocessed 1.45 0.52 :
FRCR processed 1.40 0.52
Optimal stability (processed) 0.42 1.90
Rowlands (processed) 0.35 1.73

A comparison of FRCR with the optimal stability method bears out the advan-
tages of processing and of the associated concept of effective order. When looking for
methods that use three force evaluations per step, the requirement of order four leads
to FRCR; by relaxing this requirement to effective order four, we have been able to
find a method with error constant one hundred times smaller and stability intervals
almost four times larger.

‘Rowlands’ refers to the method of effective order four introduced by Rowlands?®
and given by (the superscripts on the square brackets refer to evaluation at Q. or

oatv
P2 m..+mT<o+W%<B§L§_=,
Q™! = Q"+ AMPM
h 1 ,
prtl Mv=+~\w+mﬁl<0+.U—|w.>n~\DD>NIH<D.._:+H. Aw:

This uses the Hessian VQq of the potential and has an FSAL property: the last
square bracket in (21) will be reused at the next step. Therefore, per step, one needs
one evaluation of VqQ and one evaluation of VQq- For many problems the cost per
step of (21) is the same as that of an RKN method using two force evaluations per
step (Lopez-Marcos, Sanz-Serna and Skeel®). The trace of (21) is given by (11) with
a =0, so that L = 2/3, and the scaled stability interval has length /3. This is only
13% smaller than Verlet’s 2.

It useful to point out that (21) can be seen as a limiting case of methods of the
form (14). Assume that we impose the constraint (17) on the parameters v and b in
(14). This leaves a family of methods of effective order four depending on a single
parameter, say 7. After expressing b as a function of 7, let v tend to 1/2 in (14).
Then a little analysis shows that the limiting scheme is given by (21). As + decreases
from the optimal value in (19) to Rowlands’ 1 /2, the error constant E increases and
the stability interval I decreases. We see in the table that N and I are almost
twice as good for the optimal method than for Rowlands. However we should take
into account that while for y # 1/2, (14) costs three force evaluations per step, the
limiting scheme only costs two.

Table 2 contains essentially the same information that Table 1, but the error
constant E and stability length L have been replaced by their normalized counterparts
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mEY* and L/m (m is the number of force evaluations per step) to account for the fact
that different methods require different amounts of work per step. Note that mE/4
measures the work required to achieve a target error. From the table we conclude that
Rowlands method is more efficient than the optimal stability method. This suggests

the need for further investigating symplectic methods that use the Hessian of the
potential.

6. Numerical Experiments

The analytical comparisons of the preceding section were based on a linear prob-
lemn. <.<m complemented our assessment of the meth ods considered by carrying out
numerical experiments for a highly nonlinear problem. We integrated the liquid argon
problem described in Lépez-Marcos, Sanz-Serna and Diaz” (see also Lépez-Marcos
Sanz-Serna and Skeel®). We implemented the optimal stability method and the WOSW
lands method, both with the cheap processing suggested by Lépez-Marcos, Sanz-Serna
and Skeel®. The FRCR method was not considered: its poor practical Wma.oauwuna
has already been discussed in Sanz-Serna and Calvo'!, Chapter 9.

107 .
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Fig. 1. Relative energy error against number of function evaluati
b 1 uations. id Ii
and optimal stability method (broken line) fons: Rowlands method (solid ize)

Emmcnm lis an &mnw.muo% plot as those presented in Lépez-Marcos, Sanz-Serna and
Skeel8. The vertical axis gives the relative error in the Hamiltonian or total energy H.
The energy error is very relevant in symplectic integration: it measures the difference
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between the exact and modified Hamiltonians. The horizontal axis measures work.
For the RKN method with optimal stability region, the work equals the number
of force evaluations (i.e., is three times as Jarge as the number of steps). For the
Rowlands method, work is measured as twice the number of steps. The solid line and
circles corresponds to Rowlands method ran with h = 0.128 and h = 0.064 {(h = 0.256
was unstable). The broken line with stars corresponds to the optimal stability interval
with h = 0.256,0.128,0.0064 (h = 0.512 was unstable). We first note that, in this
nonlinear problem, the optimal stability method is able to operate successfully with
steplength h = 0.256, while the Rowlands method is not. This matches the fact
that the linear analysis yields a shorter stability interval for Rowlands’ than for the
optimal stability method. The plot also shows that, again in agreement with the linear
analysis, the Rowlands method is more efficient than the optimal stable scheme.
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