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Summary. When numerically integrating time-dependent differential equations,

it is often recommended to employ methods that preserve some of the invariant
guantities (mass, energy, etc.) of the problem being considered. This recommen-
dation is usually justified on the grounds that conservation of invariant quantities
may ensure that the numerical solution possesses some important qualitative fea-
tures. However there are cases where schemes that preserve invariants are also
advantageous in that they possess favourable error propagation mechanisms that
render them superior from a quantitative point of view. In the present paper we
consider the Korteweg-de Vries equation as a case study. We show rigorously
that, for soliton problems and at leading order, the error of conservative schemes
consists of a phase error that grows linearly with time plus a complementary term
that is bounded in thel * norm uniformly in time. For ‘general’, nonconservative
schemes the error involves a linearly growing amplitude error, a quadratically
growing phase error and a complementary term that grows linearly iHthe

norm. Numerical experiments are presented.

Mathematics Subject Classification (1998pM12

1. Introduction

The purpose of this paper is to show that, in the numerical integration of
evolutionary problems, schemes that preserve invariants of motion may have
favourable error propagation mechanisms leading to better accuracy than one
may at first have expected. An example will be presented where a conserving
second-order scheme gives more accurate results than a nonconserving, third-
order scheme, in spite of the fact that the higher order method has smaller local
(truncation) errors.
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The classical analysis [17] of numerical methods for time-dependent, ordi-
nary or partial differential equations is based on the ideas of stability, consistency
and convergence. Roughly speaking, consistency means small local errors and
stability means that local errors do not build up catastrophically. Together, con-
sistency and stability yield convergence: small (global) errors. However it is clear
that there are useful theoretical properties of a method beyond its consistency,
stability and convergence. Here we are interestedoinserved quantitieffirst
integrals): the differential equations being integrated may possess one or several
guantities (mass, energy, etc.) that are conserved in the true evolution and it is
reasonable to demand that the numerical scheme also preserves those quantities.
Several reasons are usually invoked for using schemes with such conservation
properties. In a recent paper [9], C.W. Gear writes “In some cases, failure to
maintain certain invariants leads to physically impossible solutions”. In other
cases conservation quantities are deemed important to avoid spurious blow-up of
the numerical solution. In a classical paper [1], Arakawa writes “If we can find
a finite difference scheme which has constraints analogous to the integral con-
straints of the differential form, the solution will not show the false ‘noodling’,
followed by computational instability”.

Since a quantitavely accurate numerical solution cannot show ‘spurious blow-
up’ or ‘false noodling’, it follows that the foregoing remarks are meant to apply
to integrations in intervals & t < tmax SO long, relatively to the step-sizat
being used, that the numerical solution deviates significantly from the theoretical
solution. Thus, it is often believed that, adecomes large for givert, con-
servative methods go quantitatively wrong but may stay qualitatively acceptable,
while nonconservative numerical solutions turn useless from both the quantitative
and the qualitative viewpoints.

However such an assessment of the merits of conservative schemes is too
severe. In actual fact, in many cases, conservative schemes have better error
propagation mechanisms that render them superior from a quantitative point of
view. In such cases, conservative algorithms should be preferred even for compu-
tations where the numerical solution remains close to the theoretical solution. An
instance is presented in [3]. It is shown there that, when integrating the two-body
problem with some conservative schemes (including symplectic algorithms that
automatically conserve a modified energy), the leading term of the global error
grows linearly witht, while for ‘general’ schemes the growth is quadratic. This
makes conservative methods more efficient than general methods when accurate
solutions are needed. A fuller treatment of these ideas in the case of periodic so-
lutions of ordinary differential equationsnay be seen in [4]. It should be pointed
out that the techniques in [3] or [4] are very different from those used here.

In the present paper we use the Korteweg-de Vries (KdV) equation

() Ut Ul tUyx =0, —co<X<oo, t>0,

as a model case, but our analysis may be extended to other, not necessarily inte-
grable, equations (see the final section). After presenting the numerical methods
considered (Sect. 2) and the KdV equation (Sect. 3), we analyse theoretically the
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behaviour of the numerical solutions for the case of soliton solutions (Sect. 4). It
turns out that schemes that preserve the integrals of the solution and the solution
squared behave much better than ‘general’ schemes. We show rigorously that, for
soliton problems and at leading order, the error of conservative schemes consists
of a phase error that grows linearly with time plus a complementary term that
is bounded in thed norm uniformly in time. For ‘general’, nonconservative
schemes the error involves a linearly growing amplitude error, a quadratically
growing phase error and a complementary term that grows linearly iHthe
norm. These analytical findings are proved only for single soliton solutions but
are nevertheless relevant because all other solutions asymptotically give rise to
solitons. Numerical illustrations involving single soliton solutions and interac-
tions of solitons are presented in Sect.5. The advantages of conservation are
clearly borne out, particularly so in the case of long-time integrations. The final
Sect. 6 contains some concluding remarks.

The main observation in the paper is that, if we look at the local error
of a numerical method as a vector in a suitable phase space, then conservation
properties imply constraints for the direction of the local error. When local errors
build up to give rise to the global error, their directions are not irrelevant: there
are harmful directions that lead to faster error accumulation. In many instances,
the local error of a conservative scheme hafiraction that renders it relatively
harmless and this gives the scheme an advantage. These features are not captured
by standard convergence analyses, which just take into accoustzénef the
local error.

A preliminary study [7] of the issues addressed here was presented at the 1993
Dundee conference. The unpublished report [8] contains some proofs not included
in [7]. The material in [7] and [8] is based on nonrigorous soliton perturbation
results [13], [14] and on Benjamin’s classical soliton stability theorem [2]. In
the present paper we use recent stability results due to Pego and Weinstein [16];
these results are more powerful than those in [2], [13], [14] and correspondingly
our conclusions here are stronger than the conclusions of our earlier work [7],
[8].

In this paper ‘conservative scheme’ refers to a scheme that preserves an
invariant quantity. There are other ideas of conservation in numerical analysis.
The concept osymplectic algorithmfor Hamiltonian problems [18] relates to
conservation, not of a quantity, but ofi#ferential form In numerical hyperbolic
problems retaining in the scheme tkenservation formabf the differential
equation is required to obtain the correct weak solution [15].

2. Numerical methods
2.1. Preliminaries
We consider semidiscrete (discrétecontinuousx) numerical methods for (1).

It is best to present the algorithms as applied to a general evolution equation
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(@) w =f(u),

where, for each value of the tinte the stateu(t) is an element of a real vector
spaceV . For ordinary differential equationy, is finite dimensional; for partial
differential equationsy is an infinite dimensional space consisting of functions
of the space variables. The notatign refers to the the time flow of (2), so
that ¢; () is the value at timé of the solution of (2) with initial valuex at time

0. For simplicity, our treatment in the remainder of this section is dolynal;

in particular we shall not spell out the hypotheses requiredgfoto be well
defined, the choice of norm W, etc. The lack of rigour in this section does
not affect the remainder of the paper: propositions proved hestivate later
developments, but are not actuallgedin the derivation of the main results.

The system (2) is integrated by a one-step method

®) U= o U"N),

where At denotes the time step amdl" is the numerical solution at time level
tn = nAt. Obviously the mapping o: should approximate the true evolution
given by ¢ a¢. The local error (at a stat& < V) is, by definition,

L at(Uo) = D at(Uo) — ¢ at(Uo)-

If p denotes the order of the method, theg (Uy) = O(AtP*Y). For most methods
used in practice, the local error possesses an asymptotic expansion

(4) Lat(Uo) = AtP*2p.1(Ug) + AtP20p40(Uo) + . . . .

Note thatlL »¢, and thereforelp.1, {42, ... are mappings defined i with
values inV. The mappingLa; depends on the parametét, but the/p. do
not.

Now assume that the system (2) with initial conditiof®) = « is integrated
by the method (3). Ifu(-) denotes the true solution adtl,,} the corresponding
numerical solution Yy = «), the global errorU, — u(t,) possesses a formal
asymptotic expansion

(5) Un — u(tn) = AtPey(tn) + AtP epra(tn) + . . ..

Hereeg,, €41, ... areV-valued functions ot, independent ofAt. These func-
tions are found (see [11] Chapter 11.8) by solving linear initial value problems
(variational equations)

d
(6) dt ep+k = f/(u(t)) ' ep+k + %3+k(t)7 ep+k(0) = 07 k= 07 17 2a R

The symbolf’(u(t)) refers to the derivative of evaluated at the staia(t); a
linear operator inV. The source termsy.(t) are functions oft with values

in V; they are computable in terms of the coefficiefs, in (4). The source
corresponding to the leading order is the leading term of the local error evaluated
at the true solution, i.e.,
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() Sp(t) = Lp+a(u(t)).
The expression for subsequent sources is more involved, for instance, assuming
thatp > 2,

$11(0) = fprau®) — 5 F/(U(D) - fpra(u(®) — 5 & fora(u®),

see [11] Chapter 11.8, Exercise 1 (there is a misprint in this exercise in the first
edition of [11]).

2.2. Conserved quantities

We now assume thdt is a real-valued function defined M that is conserved
by solutions of (2), i.e.l(¢i(«)) = 1(«) for all realt and alla € V. By
differentiation with respect to, it follows easily that

(8) VYup €V, 1'(up) - f(up) =0.

Conversely, if (8) holds for a functioh, thenl remains constant along solutions
of (2). Note that (8) can be rephrased by saying that, at eachugtatee vector
f (ug) must lie in the kernel of the linear functiond(up). If V is an inner-product
space, with inner product -, - >, thenl’(up) - v =< g(up), v >, for a suitable
vector g(ug) (the gradient vector of at up); in this case (8) demands thifu)
should be orthogonal tg(ug).

A step from the statel, € V with the method (3) changdsby an amount
(see (4))

1 (@At (Uo)) — 1 (¢ At(Uo))
AP (Up) - £p+1(Uo) + O(ALP*?),

1 (@ At(Uo)) — 1 (Uo)

9)

which in general iSO(AtP*1). However for some methods the change can be
O(AtP*) for k > 1 and, of course, there are also instances where for a given
equation, a given conserved quantity and a given numerical method, exact con-
servation holds, i.el,(® t(up)) = | (up) for all At and alluy € V. For instance,
all practical methods exactly conseugear invariants, see e.g. [19], and a class
of Runge-Kutta methods, including the midpoint rule, exactly consgueeiratic
invariants [5]. Whenl is not linear or quadraticad hoc special schemes have
been constructed to achieve exact conservation; the literature on this topic is
guite extensive and cannot be reviewed here, cf. [18].

From (9) we can state:

Lemma 1. A step from a stateque V with a method of order p changes the
conserved quantity | by an @\tP*') amount. The change is (@tP*?) for all
states g and all time stepgit if and only if

(10) Yup €V, 1'(Ug) - £p+1(Uo) = 0.

In particular (10) holds for methods that exactly conserve 1.
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Note that (10) demands thég.1(Up) be in the kernel of ’(up), or in the inner
product case that,.1(ug) be orthogonal to the gradieg(ug) of | at up. Thus
conservation properties are linked to ttieection in the phase spacé of the
local error.

Conditions similar to (10) guaranteei@(AtP*), k = 3,4, ..., changes may
be obtained, but they are cumbersome. Therefore we leave the investigation of
the relations between the local error expansion and conservation properties and
take up the study of the connections between conservation propertiegcdrad
errors. We look at the quantityU") — 1(U% =1(U™) — I (u(t)), where{U,}
andu(-) are the numerical and true solutions corresponding to the initial state
This quantity is both the error in the numerical computation (@f(t,)) and the
spurious growth in due to numerical integration from= 0 tot =t,,. From (5):

HU™) = 1(U°%) =1(U" —1(u(ta)
I'(u(ta)) - [U" — u(t)] + O(AL?)
AP (U(tn)) - €p(tn) +- - + AP (U(tn)) - 2p-1(tn) + O(ALP).

Hence, asAt — 0 with t, fixed, the errol (U")—1 (u(t,)) is, in generalQ(AtP).
To obtain anO(AtP*1) behaviour, one would need(u(t)) - e,(t) = 0 for all t,
etc. In this connection we have (cf. [3], Lemma 2):

Lemma 2. Let k be an integel < k < p. Assume that, for the initial condition
a, the p-th order method (3) has error§U™) — | (u(t,)) that are Q(AtP**) for
all t,. Then the source terms in the variational equation (6) satisfy

(11) vt, 1'(ut)) - s+(t)=0, j=0,....k—1
These relations are valid in particular for methods that conserve | exactly.

Proof. Differentiatel '(u(t)) - €+ (t) = 0 with respect td and use (2) and (6) to
obtain

17 (u() - [ (u(t)), €5 (O + 1'((t)) - /(D)) - a5 (1) +17(U(t)) - 4 (1) = O,

wherel”(u(t)) - [-,] is the second derivative df evaluated ati(t), a bilinear
symmetric operator. Now differentiation in (8) with respecttoleads to

Yug €V, 1"(uo)-[-,f(uo)]+1'(ug)-f'(ug) =0
and (11) follows readily. O
The casg = 0 in (11), reduces, in view of (7), tb'(u(t)) - p+1(u(t)) = 0.

Hence if the global errors i are O(AtP*Y) for all initial conditionsa € V,
then (10) holds as expected.
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3. The Korteweg-de Vries equation
3.1. The nonlinear equation

Among the many remarkable properties of (1) we focus on two: the existence of
conservation laws and the existence of solitons.

There is an infinite number of conservation laws for the initial value problem
for (1), but we only need the first two. For smooth solutions the following
guantities, that we shall respectively calhssandenergy,do not vary witht:

(12) W = /Oo u(x, 1) dx,
(13) l,(u) = /oO u?(x,t) dx.

(In many physical applications the integtalis referred to as momentum. We
here use the word energy that is standard in mathematics.)

Introduce the following real function ofs of two variables¢ (real) andA
(positive)

(14) w(E, A) = Aseclt \/gAg;

the KdV equation possesses, for each choice of real constant® andy, the
travelling wave solution

(15) U(X, t) = ’LU(X —ct— :uvA)a

wherep, determines the location of the wavetat 0 and the speed of propagation
¢ = A/3 is a function of the wave amplitud&. It is important to note that the
taller the wave the faster it travels.

For the soliton (15) the values of the conserved quantities (12)—(13) are

(16) I, = 4V3AY2 |, 3

3.2. Linearization

We now fix valuesAy and po for the soliton parameters and study the soliton
w(X — Cot — po, Ao), Co = Ag/3. To simplify the notation, we introduce the real
function wg of a real variable such that

wo(X — Cot) = w(X — Cot — w0, Ao)-
Thus the initial conditioru(x, 0) = «(x) given by
a7 a(X) = wo(X), —00 < X < 00,

gives rise to the KdV solutionug(X — cot). For an initial conditiona{x) =
a(X) +e8(X) close toa, the solution is, formallyu(X,t) = wo(X — cot) +ee(x, t) +
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O(€?). Substitutingu™in the KdV equation and equating powersepft is easily
concluded that satisfies

(18) & +wo(X — Cot)ex + wh(X — Cot)e+8xx =0, —oco <X < oo, t>0,
a differential equation that has to be supplemented with the initial condition
e(x, 0) =6(x), —00 < X < 00.

The equation (18) provides th@earization of the KdV equation around
the soliton solutiomwg. In the abstract notation of the preceding section, we
would write the KdV equation as; = f(u) and the soliton being studied as
u(t) = wo(- — cot); then (18) is nothing but the homogeneous variational equation
de/dt =f’(u(t)) - e. For this reason, the variational equations (6) that one has to
solve to find the coefficients of the global error expansion of a numerical method
are of the form

(19) & +wo(X—Cot)ec +wj(X —Cot)e+8ux = S(X,t), —oco <X < oo, t>0,

wheres is the corresponding source.
Let us now investigate the linear differential equations (18) and (19). We
begin by presenting two particular (classical) solutions of (18):

(20) wo(X — Cot), Zo(X — Cot) — twgy(X — cot),

wherez, is the function defined by

0
2(€) = 3, (€~ o, o).

(A referee has pointed out that these solutions are sometimes eellednodes

or Goldstone modeis the physics literature.) In order to give an interpretation to

these solutions, we first observe that the initial conditigr) = wo(X) + ewg(X)

is of the formwo(x + €) + O(¢?), i.e., adding wj to wp induces a phase shift.

Now the KdV solution corresponding to the initial datung(x + ¢) is obviously

wo(X — Cot +€), which in turn is of the formuwo(x — cot) + ewp(x — Cot) + O(€?).

Thereforew((x — cot) has to satisfy the variational equation (18). On the other

hand, consider the initial condition(X) = wo(X) + ezy(x). This satisfies, by

definition of zy, &(x) = w(X — uo, Ag + 3€) + O(€?), i.e., adding 3 to w induces

a change in amplitudeThe KdV solution with initial datumuw(x — po, Ao + 3e)

is obviouslyw(x — (co + e)t — o, Ag + 3¢), which is of the formwg(x — cot) —

etw{(X — Cot) +€zo(X — Cot) + O(€2). This accounts for the second solution in (20).
The preceding discussion may have been presented without any algebra. A

shift of lengthe of a soliton profile at time = 0 has at all later times the effect

of shifting the soliton by the same amount. On the other hand, if the initial

perturbation is an increase ot 8nits in the amplitudéd, the result is a new,

taller soliton whose speed tsunits larger than that of the unperturbed soliton.

Hence the perturbed soliton lies ahead of the unperturbed soliton, at a distance

et that grows linearly witht.
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Let us now turn to the nonhomogeneous variational equation (19). When the
source terns is given byw{(x — cot) and the initial condition is 0, (19) possesses
the solution
(21) twg(X — Cot).

For the source term(x — cot), the solution with trivial initial condition is

2
(22) t2o(x — Cot) —  wh(x — Cot).

The interpretation of these solutions via Duhamel’s principle is not difficult. A
steady forcing given bywyj in the KdV equation keeps shifting the solitar by
distanceedt in each time intervaltt + dt]. These infinitesimal shifts combine

to yield a shift of et units in the evolution from 0 td. On the other hand,
forcing steadily with the sourcezy in the evolution from O tat results in an
O(et) increase in amplitude. Accordingly, the soliton velocity also increases by
anO(et) amount, which in a time interval of lengthinduces a change in location

of order O(et?).

3.3. The homogeneous linearized equation

For a deeper study of (18) it is convenient to use the moving coordinates
X —Cot, T =t. In the moving frame of reference, the solitag(x — cot) becomes
an equilibrium (i.e.,T-independent) solutiom(X) of the KdV equation.

As a functionE(X, T) = E(x—cot, t) = e(x, t) of the new variables, a solution
e of (18) satisfies

Er — CoEx + wo(X)Ex + wh(X)E +Exxx =0, —oco <X < oo, T >0;
we rewrite this differential equation in the form
(23) Er = 0x ZE,
where % is the second-order linear operator
ZE = —Exx + (Co — wo(X))E.

Pego and Weinstein [16] study (23) in a weighted Sobolev spiteThis
consists of all the functions(X) such that ex@X)v(X) lies in the standard
spaceH ®. Furthermore

lollug = 1| exp@X)olly.

Here a is fixed in the range € a < /Ao/3. Note that the functiomy(X) and
all its derivatives belong tél.l, because, according to (14),(X) behaves as
exp(—/Ao/3X]) as|X| — oc.

The operatoidx.%4 generates a strongly continuous semigroup of operators
exp(Tdx.¥) in HE, so that the solution of (23) with initial conditiom € H} is
E = exp( dx.%)a. Furthermore:
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Lemma 3. (Pego and Weinstein [16] Proposition 2.8) In the spacg, 1 is
the unique eigenvalue of the operaid¢.~. The geometric multiplicity of this
eigenvalue is 1 and, moreoveker(Ox-%4) = spanfy). The algebraic multi-
plicty is 2, i.e., the generalized kernef2 ker((Ox %)) of 9x~ has dimen-
sion 2. This generalized kernel is spanned by the functigns ker(©x-%) and
29 € ker((Ox £)?). More preciselydx £z = —wj € ker(@x.%).

Therefore, in the basisy, z, the restriction 0B, % to its generalized kernel
is expressed by a Jordan matrix

0 -1

0 O
and (23) has solutions(T)wg(X) +v(T)2(X) whered3/dT = —y andd~/dT =
0, i.e., solutions of the form~H{c,T + c1)wy(X) +C220(X). In terms of the original
variablesx andt we recover the linear combinations of the particular solutions

(20).
There is a natural projectioR of the spaceH! onto the generalized kernel:

Pv =< Uanl>w(l)+<va772>207

where< -, - > denotes the standard inner product

< v1,V2 >= / v1(X)v2(X) dX
andns, 7, are a basis of the generalized kernel of the adjoint operatdy 6f
chosen in such a way that
< w(/')anl >= 17 < w(l')a e >= 07
<207771>:07 <ZO77]2>:1

(biorthogonality). Explicitly:

mX) = — 1 [tanhZ +tantf Z + Z sech Z] ,

270
_ V3o

n(X) = 18 secH Z,

where
z = V3hoy
6
If Q =1 — P denotes the complementary projection Rf then Q(H2) is

a complementary subspace of the generalized kd(igl’) of ox. % . It is well
known from operator theory th@(HJ) is invariant bydx., in the sense that, if

v € Q(HY) is in the domain obx %, thendyx Lv € Q(H}). As a consequence
exp(Tdx-£)a remains inQ(HY) for all T if a« € Q(H}). As noticed above,
solutions inP(H}) are related to perturbations of the soliton amplitude and
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phase. Solutions iQ(H}) represent perturbations that take the soliton being
studied out of the two-dimensional family of soliton solutions.

The restriction ofdx.# to Q(HL) has a spectrum consisting of a curve that
lies in the left half plane and is bounded away from the imaginary axis ([16],
Proposition 2.5). This suggests a decaying behaviour for the solutions and, in
fact, Pego and Weinstein show the following result:

Lemma 4. There are positive constants b and C such that for all initial condi-
tionsa € Q(HZL) and all positive times T

(24) | exp(T9x- %)z < C exp=bT)|al|z-

For the purposes of this paper the weighted spdges only an auxiliary
technical tool; the main results in Sect.4 correspond to the stardiandorm.
It is easy to check thalx.% generates a strongly continuous semigroupiih
Moreover we have the following estimate:

Lemma 5. There exists a positive constant C such that for all initial conditions
a € QHYH NHT and all positive times T

(25) | exp(ToxL)allus < C(llaflns + exp=bT) | allng).

Proof. SolutionsE in H' of (23) conserve the Hamiltonian functional ([18],
Sect. 14.7)

J(E):/OC BCOE(X,T)Z— ;wg(X)E(X,T)Z+ ;EX(X7T)2} dX.

— o0

We can write (the value of is not the same at each occurrence)

[ECTIE < CIECT+ 5| [ w00 T2x
= CJ(E(,0)
‘3 ‘ / " (wh()e Y EEX, TYEX, T) dx’
< CIEC0) +CIEC Dl IEC Tl

1
< CIEC )+, IECDIE +CIEC TR,

Here we have taken into account thelf(X)e=2* is bounded. It is now sufficient
to estimateJ (E(-, 0)) in terms of||E(-, 0)||5: and to use (24). O
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3.4. The nonhomogeneous linearized equation

We only study the equation (19) in the particular case where the sa(xcg
is of the forms(x — cpt), so that in the moving coordinates, the equation reads

(26) Er = 0x £ E +s(X).
The following result is easily checked by substitution of (27) in (26).

Lemma 6. If s € H}, then the solution E of (26) with initial condition(E =
0)=0is

T2
E(X,T) = <s,n1>Tw6+<s,n2><Tzo— 2w6)

.
(27) + / eT-7%7 Qs dr,
0

Note that the first two terms in the right hand side of (27) are a linear
combination of the particular solutions (21)-(22) we discussed above. These
terms provide the projection d& onto the genera lized kernel of the operator
Ox-# and therefore represent changes in soliton phase and soliton amplitude.

In some cases, the integral in (27), i.e, the projectiof afnto Q(H2), can
be computed explicitly:

Lemma 7. In the situation of the preceding lemma, assume that Qs lies in the
range of the operatofx .~ in H}, so that Qs= dx.% o for someo € HL. Then

;
(28) / T %2 Qs dr = (I — e">%)g.
JO

Proof. The expressior-&T =% 4 provides an antiderivative of the integrand.
O

The estimate (25) shows that, f@s € H?, the integral in (27), having a
bounded integrand, grows at most linearly witn the H* norm. The represen-
tation (28) implies that, itr € H*, then the integral actually remains, for al|
boundedin the H* norm.

4. Main results

Let us now assume that the KdV equation (1) is numerically integrated, with the
initial condition (17) we have been considering, by a one-step numerical method
of orderp. We make the following (reasonable) hypotheses:

(H1) The numerical solutioJ " at timet, = nAt exists, at least forAt suffi-
ciently small (how small may depend on the valueQf
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(H2) The numerical solution possessesHi an asymptotic expansion of the
form

(29) U"(X) = wo (X — Cotn) + AtPe(X, ty) + APR(X, tn, At),

where theH?! function e is independent ofAt and satisfies the varia-
tional equation (19) for a suitable source aRds a remainder such that
IIR(-, t, At)||q: — 0 asAt — 0.

(H3) The source term mentioned in (H2) is of the fosfx — cot), wheres is
a ¢ = function of a real variable. Furthermore, g — oo, s(¢) behaves

as e VA/3El.

Only the hypothesis (H3) needs some comments. As explained in Sect. 2,
at the leading order, the source term in the variational equation is given by
£o+1(u(t)), i.e., by the leading coefficient of the local error evaluated at the theo-
retical solution. In the present application, the theoretical solution is of gl&ass

depends ox andt through the combinatior — cot and behaves as @/A/3/|
for |x| large. Therefore (H3) is a most reasonable hypothesis.
We are now in a position to give the main result of the paper.

Theorem 1. Assume that the hypotheses (H1)—(H3) above hold. Then

P P
A 2 A+ Ast Aat)

U n(X) = U)(X — Cotn — o + AtpAltn — >

(30) +AtPp(X, tn) + AtPR(X, ty, At),
where
A1 =< S, M1 >, A2 =< S, 12 >,

the functionp is independent ofAt, satisfiesp(-,t) € Q(HZL) and possesses a
bound

(31) oG, Dllne < Ct,

and R is a remainder such that, for each fixed time|R(-,t, At)||y: — 0, as
At — 0.

Proof. By (H3) the sources(x —cot) is such thas € HXNH?®. By (27) (rewritten
in the (,t) coordinates), the functioa(x,t) in (H2) is of the form

e(x,t) = <s,m > twy(x — Cot)
t2
+<sm > (tZO(X — Cot) — 2wf)(x - cot)>
(32) + p(x; 1),

where, for each, p(-,t) € Q(H2). The fact that the growth of is at most linear
in theH! norm was noticed in the remark following Lemma 7. We substitute
from (32) in (29). This gives rise to the combination
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wo(X — Cot) + AtP < 5,11 > twj(X — Cot)
+ AP <510 > (tzo(x — Cot) — tzzw()(x - cot)) ,
which, by definition ofwg andz,, differs from
w(X — Cotn — po + AtP At — Aztp Aot2, Ag + A;p Aotn)

in O(At?) terms that can be hidden in the remainderl

From the theorem we see that the numerical solution consists of three com-
ponents. The first, that we cathodified solitonhas, at each time, the exact
shape of a KdV soliton profile. However the modified soliton has an amplitude
Ao + (AtP/3)\ot that, as the integration proceeds, keeps varying at a steady rate
(AtP/3)\,. Furthermore, the modified soliton has a phase that is an error by an
amountAtP A t — (AtP/2)\,t? growing quadratically with t. (Cf. the discussion
following (22).) The amplitude and phase errors in the modified soliton are of
the order of AtP. The second term in (30), that we calbmplementary error,
represents those numerical errors that, while being of the leading Ord&t?),
cannot be interpreted as changes in the soliton amplitude and phases (at
each timet in the complementar@(H2) of the generalized kernel). For instance
AtPp may account for the fact that the shape of the numerical solution is not
exactly the same as that of a true KdV soliton. A&t p may contain a soliton
tail; an issue that we will discuss when presenting the numerical results. Finally
the third term in (30) represents a higher ordsrAtP) remainder.

Whent is large andAt is so small (relatively ta) that the higher order
remainder may be ignored, the dominant contribution to the error i© {bAtP)
phase error; the amplitude error and the complementary ektpronly grow
linearly with t.

Let us now relate Theorem 1 and the conservation laws. As discussed in
Sect. 2, all sensible methods exactly conserve the rhgaskecause this is a
linear functional. Accordingly (Lemma 2) we expect that the sow(@e— cot)
be orthogonal, for eachto the gradient of mass. Now the gradient of mass is
formally given by the function 1, because

l1(ug +ev) = l1(Up) +e < L v >.

Therefore, we expect, for any reasonable metkod, s >= 0, or in other words
ff; s(§)d¢ = 0. Similarly the gradient of energy at the solitag(x — cot) is

the function Zvg(x — cot) and hence for methods that conserve exactly energy
< s,wp >= 0. By Lemma 2, the same orthogonality relation is expected to hold
for methods of ordep that, when integrating the soliton, produce global energy
errors of ordelO(AtP*). For conservative methods the estimates in Theorem 1
can be improved considerably.

Theorem 2. Assume that the hypotheses (H1)-(H3) above hold and that the
source s satisfies the ‘conservation propertiess, 1 >=< s, wp >= 0. Then
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UTX) = w(X — Cotn — 1o + AtPAsty, Ag)
(33) +Atpp(x7 tn) + Atpﬁ(xa trla At))

where
)\1 =<s,m >,

the functionp is independent ofAt, satisfiesp(-,t) € Q(HZL) and possesses a
bound

(34) loC,D)llwe < C,

and R is a remainder such that, for each fixed time|R(-,t, At)||y: — O, as
At — 0.

Proof. The functionswy(x — cot) and -, differ in a multiplicative constant, so
that the hypothesis: s, wo >= 0 implies A, = 0 in (30).

On the other hand, we are going to prove that the projedfaris in the
range of the operatadx ~ (in H}), so that Lemma 7 applies, leading to the
boundedness qof in the H norm.

We begin by showing that

<Qs,1>=0.
In fact, by definition ofQ =1 — P,
<Qs,1>=<s,1>—<sm><wyl>—<sm><2,1>;

the first and third term in the right hand side vanish because of the hypothesis
on s, the second vanishes becausevj, 1 >= 0.
Once we know that the integral €s vanishes, it is clear that

X
A(X) = / (Q9(©) d¢

is a smooth function that lies il NH?* and such thadx A = Qs. It remains to
show that/ is in the range of#, or, in other words, thatl is orthogonal to the
kernel of the adjoint operator. This kernel is precisely the span of the function
wg. By integration by parts< A, wy >= — < s, wp >= 0 and the proof is ready.

O

Note that in this case the modified soliton keeps the correct ampliyidad
has a phase error that only grovsearly with time. Also the complementary
error remains bounded. The most harmful direction that the source term may
have is that of the soliton profilayg (i.e., that ofr,). It is the component of
s in this direction that excites the quadratic growth explained in the discussion
following (22). Preservation of energy ensures thats a vanishing component
in this harmful direction.
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5. Numerical examples
5.1. Schemes being compared

We consider the family of singly diagonally implicit Runge-Kutta (SDIRK) meth-
ods

% 0
1-2y
1 1
2 2

i.e., the methods that integrate (2) according to the recipe
urt=un e U U]

where the stage vectots* and U ** are obtained by successively solving the
equations

u* UM+ Atyf (U ™),
U™ = UM+ At(L— 29)f (U*) + Atyf (U*).

Note that both equations are very similar to the equation to be solved at each
step of the familiar implicit Euler scheme.
Only two values of the parameterwill be considered:

(i) v =1/2. In this caseU ** coincides withU * and there is really only one
system to solve per step. The method then reduces to the familiar midpoint
rule

Un+1:Un+Atf(;(Un+Un+l))

(see [18], Sect. 3.3.2). The method has omler2, is A-stable and conserves
(see [5]) quadratic invariants such as the endggy

(i) v = (3++/3)/6, yielding a third orderg = 3), A-stable method discovered
by Ngrsett and Crouzeix (see [11], Chapter II, Table 7.2 and [12], Chapter
lll, Table 6.3). The method, which we denote by SDIRK3, donesconserve
quadratic invariants.

The purpose of the experiments to be reported below is to illustrate the
preceding theoretical results, rather than to establish a comparison between the
practical performance of both integrators. For such a comparison to be meaning-
ful, one should look at the errors yielded by the methods when both are using the
same amount of computational time. However below we run the methods with
equal values ofAt and this is biased in favour of the SDIRK3 integrator, which
requires more work per step.

The validity of the hypotheses (H1)-(H2) may be established by standard
analyses. On the other hand, it is easy to check that the leading terms of the
local errors of the methods satisfy the requirements in (H3). Furthermore it is an
exercise to show that for the midpoint rule beths, 1 > and< s, wp > vanish,
while for the SDIRK3 scheme: 5,1 >=0 but< s, wg ># 0.
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5.2. One soliton experiments

Our first group of experiments corresponds to the motion of a single soliton
analyzed in Sect. 4. We fix the soliton parameters at the valgles12 (velocity

Co = 4) andup = —10 and integrate froh= 0 tot = 10. The soliton thus travels
from x = —10 tox = 30. To implement in practice the semidiscrete schemes
under consideration we discretize accurately the spatial variable on a fine grid
so that all errors to be reported correspond to the time-stepping schemes. We
compute the spatial derivatives by a Fourier pseudospectral approximation with
256 modes in the interval20 < x < 60 (see, e.g., [6] for details). The errors
introduced by the exponentially accurate space discretization are negligible; this
was checked by refining the spatial grid.

0

10

107 10° 10'

Fig. 1. L2-error against. Solid line: midpoint rule; broken line: SDIRK3. The time steps are=
1/40,1/80,1/160

Figure 1 gives, in a log-log scale, th8-norm of the global error as a function
of t. The solid lines correspond to the midpoint rule and the broken lines to
SDIRK3. Shown are the runs corresponding 46 = 1/40 (x signs), 180
(circles) and 1160 (2 signs). By examining the distance between the three
parallel lines corresponding to a given method, we conclude that errors at a
given value oft behave asAt? for the midpoint rule and agt® for the SDIRK3
scheme. Thus these are accurate integrations wiers small enough (given
the values ott) for the errors to show their expected asymptotic order. Further
confirmation can be obtained from Table 1 that presents the errors at the final time
t = 10. The slopes of the lines in Fig. 1 reveal that for the midpoint rule errors
grow liket (cf. Theorem 2), while for SDIRK3 they grow lik& (cf. Theorem 1).

For any fixed value of and small enoughit the third order scheme will
give smaller errors than the second order scheme. In Fig. 1 we see thatlat
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Fig. 2. Midpoint rule with At = 1/40 att = 10. True soliton (solid line), modified soliton (broken
line) and numerical result (crosses)

the crossover value ofit is around ¥160 and then the size of the error is
approximately 5< 10~°. Since the norms of the errors behavekasAt? and
Kot2At3, the crossover value ofit behaves like K1 /Kz)t—1. Hence att = 10
the crossover value would be of the order of 50~#, when both methods would
yield errors of about 5 10~°. We conclude that, when integrating uptte 10
or beyond with realistic values afit, it is not advisable to use the third order
scheme.

Let us now investigate in detail the structure of the error, beginning with the
midpoint rule. We have computed the coefficientthat features in the modified
soliton in (33) and thé.2-norm of the difference between the computed solution
U" and the modified soliton. According to (33) we are then measuring the size
of the complementary error plus the remainder. The results at the finaD are
displayed in Table 1. Two things should be noted. First, the errors with respect
to the modified soliton are two orders of magnitude smaller than the true errors
(‘computed minus true’). In other words, the bulk of the error in the numerically
computed soliton corresponds to the phase shift\it. Thus the numerically
computed soliton possesses essentially a true KdV soliton profile (14) and keeps
the right amplituded, while travelling at an erroneous speeg— At?);. This
is confirmed by Fig. 2 that shows, at= 10, the true soliton solution (solid
line), the numerical solution (crosses) and the modified solitbh= 1/40). In
Fig. 3 we have again displayed the computed solution=at0 but now with a
vertical scale blown-up by three orders of maginitude. We see that the computed
solution consists of a numerical soliton along with a small amplitude oscillation.
No soliton tail appears

Numerische Mathematik Electronic Edition
page 438 of Numer. Math. 75: 421-445 (1997)



Accuracy and conservation properties in numerical integration 439

2 ) ) . | ; L I
-20 -10 0 10 20 30 40 50 60

Fig. 3. Midpoint rule with At = 1/40 att = 10. Numerical solution. The vertical scale has been
magnified by three orders of magnitude

error_mod
4.5+ B

0.5} 1

0 I 1 1 1 1 ) I ) 1
0 1 2 3 4 5 6 7 8 9 10

Fig. 4. L2-error with respect to the modified soliton agaibsMidpoint rule with At = 1/160

Table 1.
Midpoint SDIRK3

At Error Error-mod  Error Error-mod
2.50E-2 8.44E-3 6.45E-5 2.76E-1 1.69E-2

1.25E-2 2.12E-3 1.59E-5 3.66E-2 5.04E-4
6.25E-3 5.31E-4 4.26E-6 4.62E-3  3.62E-5
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The second thing to be noted in Table 1 is that the errors with respect to the
modified soliton show a®(At?) behaviour. This indicates that, for the small
values of At considered, the complementary error dominates over the higher
order remainder. In fact for the midpoint rule, the remaindgR is expected
to be specially small. It should behave a&At3) rather than a®(At?): since
the method is symmetric only even powers4if appear in the expansion of the
global error ([11], Chapter I, Theorem 8.10). In Fig. 4 we have plotted the norm
of the error with respect to the modified soliton fat = 1/160. As we have
just discussed, this essentially corresponds to the norm of the complementary
error At?p. The bounded behaviour predicted by (34) is clearly borne out. The
complementary error here is due to the numerically computed soliton not having
exactly a true KdV profile (1). In the figure we see that at an initial transient
regime the soliton shape evolves from the true KdV shape it possesses at
0 to the ‘numerical’ shape. In this transient, the complementary error builds
up. After the transient, there is no further change in the soliton shape and the
complementary error stops growing. This concludes our study of the midpoint
rule results in the one soliton solution.

For the SDIRK3 method, Fig. 5 shows, tat= 10 the true soliton solution
(solid line), the numerical solution (crosses) and the modified solitdh £
1/40). We see that, within plotting accuracy, the computed solution coincides
with the modified soliton, i.e., the complementary error and the remainder are,
again, negligible. Now, according to Theorem 1, there are two sources of error
implicit in the modified soliton: a smalD(tAt3) amplitude dampingX, < 0)
and a comparatively larg@(t?>At%) phase shift. Both effects are clearly visible
in Fig. 5.

12

Fig. 5. SDIRK3 with At = 1/40 att = 10. True soliton (solid line), modified soliton (broken line)
and numerical result (crosses)
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X
-2
-20 -10 0 10 20 30 40 50 60

Fig. 6. SDIRK3 with At = 1/40 att = 10. Numerical solution. The vertical scale has been magnified
by three orders of magnitude

In Fig. 6 we have again displayed the computed solution=af0, but now
with a vertical scale blown up by three orders of magnitude. A soliton ‘tail’ is
apparent (cf. Fig. 3). The height of the tail is of abouk30~2 and does not
increase witht. The tail ‘begins’ at the locatior = ;o where the soliton started
and ‘ends’ at the current soliton position. The existence of the tail and the value of
the height can be predicted by soliton perturbation theory (see e.g. [14]), because,
as shown by (7) and (19), numerical discretization amounts to a perturbation of
the differential equation. The mechanism leading to the development of the tail
is as follows. The amplitude of the modified soliton keeps decaying at a rate
|At3)\,/3|. Hence (cf. (16)) the modified soliton keeps losing its massSince
the numerical solutioJ" is mass conserving<( s,1 >= 0), the mass lost in
the modified soliton must be gained somewhere. In fact the constant tail height
is such that the mass in the trailing tail increases at the same rate as the mass in
the modified soliton decreases (cf. [10]).

Figure 7 is a plot of error with respect to the modified soliton against time
(At = 1/160). This includes the complementary and remainder errors. The linear
growth predicted in (31) and due to the tail is apparent. The same plat at
1/80 or 1/40 (not shown in the paper) shows, foclose to 10, an error growth
higher than linear. This is explained as follows. An analysis similar to that leading
to Theorem 1 reveals that the main part of the remaindeR consists of an
additionalO(t? At*) phase shift. The complementary error, behavin@ésAt®),
is likely to be hidden by the remainder whers large andAt moderate. In fact,
the last column of Tab. 1 does not show @At%) behaviour, which suggests
that, for the range of values dft considered, the remainder is not small relatively
to the complementary error.
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45+ error_mod i

t
0 1 2 3 4 5 6 7 8 9 10
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Fig. 7. L2-error with respect to the modified soliton agaibsS8DIRK3 with At = 1/160

5.3. Soliton interaction

We have also performed experiments to investigate whether the advantages of
conservation borne out in the preceding subsection and backed by the analysis
in Sect. 4 for one soliton solutions also hold for more general solutions.

We studied the interaction between two solitons of amplitudes 12 and 6. We
worked in a time interval 0< t < 20; this is long enough for the solitons
to interact and to emerge from the interaction (for the single soliton solution
we took a shorter interval & t < 10). We employed a spatial interval of
length 130 and the pseudospectral method with 512 Fourier modes. This en-
sures that the spatial discretization errors are negligible. The grid spacing is how
130/512 =~ 0.25, slightly smaller than the spacing &%6 ~ 0.31 used for the
single soliton experiments. Figure 8 shows error versus time for the midpoint
rule, At = 1/40,1/80,1/160. The error grows linearly before and after the in-
teraction. For the SDIRK3 method (Fig. 9) the growth is quadratic. Note the
different vertical scales in Figs. 8-9; the superiority of the conservative scheme
is clear.

6. Conclusions and extensions

We have analyzed in detail the behaviour of the leadif@\tP) term of the

global error in the time integration of the KdV soliton. The most harmful com-
ponent of that error is a quadratic phase error which is excited by the projection
onto the energy gradient of the leading term of the local error. In the case of
energy conserving schemes the quadratic growth is therefore absent. Conserva-
tion properties thus have a big impact on the global errors in the numerical
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. ©10° midpoint;A1=12;A2=6
T T T T

Fig. 8. Soliton interaction with the midpoint rule.?-error againstt. The time steps areAt =
1/40,1/80,1/160

sdirk;A1=12;A2=6
0.8 T T T

0.7
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0.1r

0 \
0 2 4 6 8 10 12 14 16 18 20

Fig. 9. Soliton interaction with SDIRK3.L2-error againstt. The time steps areAt =
1/40,1/80,1/160
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solution. An example was presented where a conserving second-order scheme
gives, for all realistic values af\t, more accurate results than a nonconserving,
third-order scheme, in spite of the fact that the higher order method has smaller
local (truncation) errors.

The error estimates presented here show linear or quadratic error growth.
This should be compared with standard estimates that gspenentiallywith t.

This improvement is possible by restricting the attention to particular solutions
(solitons) and carefully analyzing the corresponding variational equation.

Our analysis can be extended in many ways. It is straightforward to study the
structure of the term®(AtP*), j = 1,...,p — 1 of the expansion of the global
error. All these terms satisfy the variational equation (19) with sources that, for
energy-conseving methods, are orthogonal to the energy gradient, cf. Lemma 2.

As a second, relatively easy, generalization we could have considered fully
discrete methods or methods with discretand continuoug: the error propa-
gation equation for all those methods is still (19).

Finally, more general equations can be considered. The analysis by Pego and
Weinstein [16], which is the basis of our results, applies to the case where the
termuuy is replaced by other nonlinearities of the fofifu),, so that catering for
this more general case would have been a simple matter. We strongly believe that
the extension to even more general families of equations having solitary wave
solutions with amplitude-dependent velocity is possible. Of course the extension
of our analysis would require a deep analysis of the linearized equations, as that
carried out in [16] for the KdV-like case.

An interesting question raised by one of the referees is whether it is possible
to construct schemes witfs, 1) = (s, wg) = (S, 1) = 0. According to Theorem
2 those schemes would have, for a single soliton solution, a leading error term
bounded in time.
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