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Summary. When numerically integrating time-dependent differential equations,
it is often recommended to employ methods that preserve some of the invariant
quantities (mass, energy, etc.) of the problem being considered. This recommen-
dation is usually justified on the grounds that conservation of invariant quantities
may ensure that the numerical solution possesses some important qualitative fea-
tures. However there are cases where schemes that preserve invariants are also
advantageous in that they possess favourable error propagation mechanisms that
render them superior from a quantitative point of view. In the present paper we
consider the Korteweg-de Vries equation as a case study. We show rigorously
that, for soliton problems and at leading order, the error of conservative schemes
consists of a phase error that grows linearly with time plus a complementary term
that is bounded in theH 1 norm uniformly in time. For ‘general’, nonconservative
schemes the error involves a linearly growing amplitude error, a quadratically
growing phase error and a complementary term that grows linearly in theH 1

norm. Numerical experiments are presented.

Mathematics Subject Classification (1991):65M12

1. Introduction

The purpose of this paper is to show that, in the numerical integration of
evolutionary problems, schemes that preserve invariants of motion may have
favourable error propagation mechanisms leading to better accuracy than one
may at first have expected. An example will be presented where a conserving
second-order scheme gives more accurate results than a nonconserving, third-
order scheme, in spite of the fact that the higher order method has smaller local
(truncation) errors.
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The classical analysis [17] of numerical methods for time-dependent, ordi-
nary or partial differential equations is based on the ideas of stability, consistency
and convergence. Roughly speaking, consistency means small local errors and
stability means that local errors do not build up catastrophically. Together, con-
sistency and stability yield convergence: small (global) errors. However it is clear
that there are useful theoretical properties of a method beyond its consistency,
stability and convergence. Here we are interested inconserved quantities(first
integrals): the differential equations being integrated may possess one or several
quantities (mass, energy, etc.) that are conserved in the true evolution and it is
reasonable to demand that the numerical scheme also preserves those quantities.
Several reasons are usually invoked for using schemes with such conservation
properties. In a recent paper [9], C.W. Gear writes “In some cases, failure to
maintain certain invariants leads to physically impossible solutions”. In other
cases conservation quantities are deemed important to avoid spurious blow-up of
the numerical solution. In a classical paper [1], Arakawa writes “If we can find
a finite difference scheme which has constraints analogous to the integral con-
straints of the differential form, the solution will not show the false ‘noodling’,
followed by computational instability”.

Since a quantitavely accurate numerical solution cannot show ‘spurious blow-
up’ or ‘false noodling’, it follows that the foregoing remarks are meant to apply
to integrations in intervals 0< t < tmax so long, relatively to the step-size∆t
being used, that the numerical solution deviates significantly from the theoretical
solution. Thus, it is often believed that, ast becomes large for given∆t , con-
servative methods go quantitatively wrong but may stay qualitatively acceptable,
while nonconservative numerical solutions turn useless from both the quantitative
and the qualitative viewpoints.

However such an assessment of the merits of conservative schemes is too
severe. In actual fact, in many cases, conservative schemes have better error
propagation mechanisms that render them superior from a quantitative point of
view. In such cases, conservative algorithms should be preferred even for compu-
tations where the numerical solution remains close to the theoretical solution. An
instance is presented in [3]. It is shown there that, when integrating the two-body
problem with some conservative schemes (including symplectic algorithms that
automatically conserve a modified energy), the leading term of the global error
grows linearly witht , while for ‘general’ schemes the growth is quadratic. This
makes conservative methods more efficient than general methods when accurate
solutions are needed. A fuller treatment of these ideas in the case of periodic so-
lutions ofordinary differential equationsmay be seen in [4]. It should be pointed
out that the techniques in [3] or [4] are very different from those used here.

In the present paper we use the Korteweg-de Vries (KdV) equation

ut + uux + uxxx = 0, −∞ < x <∞, t > 0,(1)

as a model case, but our analysis may be extended to other, not necessarily inte-
grable, equations (see the final section). After presenting the numerical methods
considered (Sect. 2) and the KdV equation (Sect. 3), we analyse theoretically the
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behaviour of the numerical solutions for the case of soliton solutions (Sect. 4). It
turns out that schemes that preserve the integrals of the solution and the solution
squared behave much better than ‘general’ schemes. We show rigorously that, for
soliton problems and at leading order, the error of conservative schemes consists
of a phase error that grows linearly with time plus a complementary term that
is bounded in theH 1 norm uniformly in time. For ‘general’, nonconservative
schemes the error involves a linearly growing amplitude error, a quadratically
growing phase error and a complementary term that grows linearly in theH 1

norm. These analytical findings are proved only for single soliton solutions but
are nevertheless relevant because all other solutions asymptotically give rise to
solitons. Numerical illustrations involving single soliton solutions and interac-
tions of solitons are presented in Sect. 5. The advantages of conservation are
clearly borne out, particularly so in the case of long-time integrations. The final
Sect. 6 contains some concluding remarks.

The main observation in the paper is that, if we look at the local error
of a numerical method as a vector in a suitable phase space, then conservation
properties imply constraints for the direction of the local error. When local errors
build up to give rise to the global error, their directions are not irrelevant: there
are harmful directions that lead to faster error accumulation. In many instances,
the local error of a conservative scheme has adirection that renders it relatively
harmless and this gives the scheme an advantage. These features are not captured
by standard convergence analyses, which just take into account thesize of the
local error.

A preliminary study [7] of the issues addressed here was presented at the 1993
Dundee conference. The unpublished report [8] contains some proofs not included
in [7]. The material in [7] and [8] is based on nonrigorous soliton perturbation
results [13], [14] and on Benjamin’s classical soliton stability theorem [2]. In
the present paper we use recent stability results due to Pego and Weinstein [16];
these results are more powerful than those in [2], [13], [14] and correspondingly
our conclusions here are stronger than the conclusions of our earlier work [7],
[8].

In this paper ‘conservative scheme’ refers to a scheme that preserves an
invariant quantity. There are other ideas of conservation in numerical analysis.
The concept ofsymplectic algorithmfor Hamiltonian problems [18] relates to
conservation, not of a quantity, but of adifferential form. In numerical hyperbolic
problems retaining in the scheme theconservation formatof the differential
equation is required to obtain the correct weak solution [15].

2. Numerical methods

2.1. Preliminaries

We consider semidiscrete (discretet , continuousx) numerical methods for (1).
It is best to present the algorithms as applied to a general evolution equation
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ut = f (u),(2)

where, for each value of the timet , the stateu(t) is an element of a real vector
spaceV . For ordinary differential equations,V is finite dimensional; for partial
differential equations,V is an infinite dimensional space consisting of functions
of the space variables. The notationφt refers to the the timet flow of (2), so
thatφt (α) is the value at timet of the solution of (2) with initial valueα at time
0. For simplicity, our treatment in the remainder of this section is onlyformal;
in particular we shall not spell out the hypotheses required forφt to be well
defined, the choice of norm inV , etc. The lack of rigour in this section does
not affect the remainder of the paper: propositions proved heremotivate later
developments, but are not actuallyused in the derivation of the main results.

The system (2) is integrated by a one-step method

U n+1 = Φ∆t (U
n),(3)

where∆t denotes the time step andU n is the numerical solution at time level
tn = n∆t . Obviously the mappingΦ∆t should approximate the true evolution
given byφ∆t . The local error (at a stateu0 ∈ V ) is, by definition,

L∆t (u0) = Φ∆t (u0)− φ∆t (u0).

If p denotes the order of the method, thenL∆t (u0) = O(∆tp+1). For most methods
used in practice, the local error possesses an asymptotic expansion

L∆t (u0) = ∆tp+1`p+1(u0) + ∆tp+2`p+2(u0) + . . . .(4)

Note thatL∆t , and thereforè p+1, `p+2, . . . are mappings defined inV with
values inV . The mappingL∆t depends on the parameter∆t , but the`p+k do
not.

Now assume that the system (2) with initial conditionu(0) = α is integrated
by the method (3). Ifu(·) denotes the true solution and{Un} the corresponding
numerical solution (U0 = α), the global errorUn − u(tn) possesses a formal
asymptotic expansion

Un − u(tn) = ∆tpep(tn) + ∆tp+1ep+1(tn) + . . . .(5)

Here ep, ep+1, . . . are V -valued functions oft , independent of∆t . These func-
tions are found (see [11] Chapter II.8) by solving linear initial value problems
(variational equations)

d
dt

ep+k = f ′(u(t)) · ep+k + sp+k(t), ep+k(0) = 0, k = 0, 1, 2, . . . .(6)

The symbolf ′(u(t)) refers to the derivative off evaluated at the stateu(t); a
linear operator inV . The source termssp+k(t) are functions oft with values
in V ; they are computable in terms of the coefficients`p+k in (4). The source
corresponding to the leading order is the leading term of the local error evaluated
at the true solution, i.e.,
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sp(t) = `p+1(u(t)).(7)

The expression for subsequent sources is more involved, for instance, assuming
that p ≥ 2,

sp+1(t) = `p+2(u(t))− 1
2

f ′(u(t)) · `p+1(u(t))− 1
2

d
dt
`p+1(u(t)),

see [11] Chapter II.8, Exercise 1 (there is a misprint in this exercise in the first
edition of [11]).

2.2. Conserved quantities

We now assume thatI is a real-valued function defined inV that is conserved
by solutions of (2), i.e.,I (φt (α)) = I (α) for all real t and all α ∈ V . By
differentiation with respect tot , it follows easily that

∀u0 ∈ V , I ′(u0) · f (u0) = 0.(8)

Conversely, if (8) holds for a functionI , thenI remains constant along solutions
of (2). Note that (8) can be rephrased by saying that, at each stateu0, the vector
f (u0) must lie in the kernel of the linear functionalI ′(u0). If V is an inner-product
space, with inner product< ·, · >, then I ′(u0) · v ≡< g(u0), v >, for a suitable
vectorg(u0) (the gradient vector ofI at u0); in this case (8) demands thatf (u0)
should be orthogonal tog(u0).

A step from the stateu0 ∈ V with the method (3) changesI by an amount
(see (4))

I (Φ∆t (u0))− I (u0) = I (Φ∆t (u0))− I (φ∆t (u0))

= ∆tp+1I ′(u0) · `p+1(u0) + O(∆tp+2),(9)

which in general isO(∆tp+1). However for some methods the change can be
O(∆tp+k) for k > 1 and, of course, there are also instances where for a given
equation, a given conserved quantity and a given numerical method, exact con-
servation holds, i.e.,I (Φ∆t (u0)) = I (u0) for all ∆t and allu0 ∈ V . For instance,
all practical methods exactly conservelinear invariants, see e.g. [19], and a class
of Runge-Kutta methods, including the midpoint rule, exactly conservequadratic
invariants [5]. WhenI is not linear or quadratic,ad hoc special schemes have
been constructed to achieve exact conservation; the literature on this topic is
quite extensive and cannot be reviewed here, cf. [18].

From (9) we can state:

Lemma 1. A step from a state u0 ∈ V with a method of order p changes the
conserved quantity I by an O(∆tp+1) amount. The change is O(∆tp+2) for all
states u0 and all time steps∆t if and only if

∀u0 ∈ V , I ′(u0) · `p+1(u0) = 0.(10)

In particular (10) holds for methods that exactly conserve I .
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Note that (10) demands that`p+1(u0) be in the kernel ofI ′(u0), or in the inner
product case that̀p+1(u0) be orthogonal to the gradientg(u0) of I at u0. Thus
conservation properties are linked to thedirection in the phase spaceV of the
local error.

Conditions similar to (10) guaranteeingO(∆tp+k), k = 3, 4, . . ., changes may
be obtained, but they are cumbersome. Therefore we leave the investigation of
the relations between the local error expansion and conservation properties and
take up the study of the connections between conservation properties andglobal
errors. We look at the quantityI (U n) − I (U 0) = I (U n) − I (u(tn)), where{Un}
andu(·) are the numerical and true solutions corresponding to the initial stateα.
This quantity is both the error in the numerical computation ofI (u(tn)) and the
spurious growth inI due to numerical integration fromt = 0 to t = tn. From (5):

I (U n)− I (U 0) = I (U n)− I (u(tn))

= I ′(u(tn)) · [U n − u(tn)] + O(∆t2p)

= ∆tpI ′(u(tn)) · ep(tn) + · · · + ∆t2p−1I ′(u(tn)) · e2p−1(tn) + O(∆t2p).

Hence, as∆t → 0 with tn fixed, the errorI (U n)−I (u(tn)) is, in general,O(∆tp).
To obtain anO(∆tp+1) behaviour, one would needI ′(u(t)) · ep(t) = 0 for all t ,
etc. In this connection we have (cf. [3], Lemma 2):

Lemma 2. Let k be an integer1 ≤ k ≤ p. Assume that, for the initial condition
α, the p-th order method (3) has errors I(U n) − I (u(tn)) that are O(∆tp+k) for
all tn. Then the source terms in the variational equation (6) satisfy

∀t , I ′(u(t)) · sp+j (t) ≡ 0, j = 0, . . . , k − 1(11)

These relations are valid in particular for methods that conserve I exactly.

Proof. DifferentiateI ′(u(t)) · ep+j (t) = 0 with respect tot and use (2) and (6) to
obtain

I ′′(u(t)) · [f (u(t)), ep+j (t)] + I ′(u(t)) · f ′(u(t)) · ep+j (t) + I ′(u(t)) · sp+j (t) = 0,

where I ′′(u(t)) · [·, ·] is the second derivative ofI evaluated atu(t), a bilinear
symmetric operator. Now differentiation in (8) with respect tou0 leads to

∀u0 ∈ V , I ′′(u0) · [·, f (u0)] + I ′(u0) · f ′(u0) = 0

and (11) follows readily. ut

The casej = 0 in (11), reduces, in view of (7), toI ′(u(t)) · `p+1(u(t)) = 0.
Hence if the global errors inI are O(∆tp+1) for all initial conditionsα ∈ V ,
then (10) holds as expected.
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3. The Korteweg-de Vries equation

3.1. The nonlinear equation

Among the many remarkable properties of (1) we focus on two: the existence of
conservation laws and the existence of solitons.

There is an infinite number of conservation laws for the initial value problem
for (1), but we only need the first two. For smooth solutions the following
quantities, that we shall respectively callmassandenergy,do not vary witht :

I1(u) =
∫ ∞

−∞
u(x, t) dx,(12)

I2(u) =
∫ ∞

−∞
u2(x, t) dx.(13)

(In many physical applications the integralI2 is referred to as momentum. We
here use the word energy that is standard in mathematics.)

Introduce the following real function ofw of two variablesξ (real) andA
(positive)

w(ξ,A) = Asech2
√

3A
6

ξ;(14)

the KdV equation possesses, for each choice of real constantsA > 0 andµ, the
travelling wave solution

u(x, t) = w(x − ct − µ,A),(15)

whereµ determines the location of the wave att = 0 and the speed of propagation
c = A/3 is a function of the wave amplitudeA. It is important to note that the
taller the wave the faster it travels.

For the soliton (15) the values of the conserved quantities (12)–(13) are

I1 = 4
√

3A1/2, I2 =
8
√

3
3

A3/2.(16)

3.2. Linearization

We now fix valuesA0 andµ0 for the soliton parameters and study the soliton
w(x − c0t − µ0,A0), c0 = A0/3. To simplify the notation, we introduce the real
functionw0 of a real variable such that

w0(x − c0t) = w(x − c0t − µ0,A0).

Thus the initial conditionu(x, 0) = α(x) given by

α(x) = w0(x), −∞ < x <∞,(17)

gives rise to the KdV solutionw0(x − c0t). For an initial condition ˜α(x) =
α(x) +εδ(x) close toα, the solution is, formally, ˜u(x, t) = w0(x−c0t) +εe(x, t) +
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O(ε2). Substituting ˜u in the KdV equation and equating powers ofε, it is easily
concluded thate satisfies

et + w0(x − c0t)ex + w′
0(x − c0t)e + exxx = 0, −∞ < x <∞, t > 0,(18)

a differential equation that has to be supplemented with the initial condition

e(x, 0) = δ(x), −∞ < x <∞.

The equation (18) provides thelinearization of the KdV equation around
the soliton solutionw0. In the abstract notation of the preceding section, we
would write the KdV equation asut = f (u) and the soliton being studied as
u(t) = w0(·−c0t); then (18) is nothing but the homogeneous variational equation
de/dt = f ′(u(t)) · e. For this reason, the variational equations (6) that one has to
solve to find the coefficients of the global error expansion of a numerical method
are of the form

et +w0(x−c0t)ex +w′
0(x−c0t)e+exxx = s(x, t), −∞ < x <∞, t > 0,(19)

wheres is the corresponding source.
Let us now investigate the linear differential equations (18) and (19). We

begin by presenting two particular (classical) solutions of (18):

w′
0(x − c0t), z0(x − c0t)− tw′

0(x − c0t),(20)

wherez0 is the function defined by

z0(ξ) = 3
∂w

∂A
(ξ − µ0,A0).

(A referee has pointed out that these solutions are sometimes calledzero modes
or Goldstone modesin the physics literature.) In order to give an interpretation to
these solutions, we first observe that the initial condition ˜α(x) = w0(x) + εw′

0(x)
is of the formw0(x + ε) + O(ε2), i.e., addingw′

0 to w0 induces a phase shift.
Now the KdV solution corresponding to the initial datumw0(x + ε) is obviously
w0(x − c0t + ε), which in turn is of the formw0(x − c0t) + εw′

0(x − c0t) + O(ε2).
Thereforew′

0(x − c0t) has to satisfy the variational equation (18). On the other
hand, consider the initial condition ˜α(x) = w0(x) + εz0(x). This satisfies, by
definition of z0, α̃(x) = w(x − µ0,A0 + 3ε) + O(ε2), i.e., adding z0 to w0 induces
a change in amplitude.The KdV solution with initial datumw(x − µ0,A0 + 3ε)
is obviouslyw(x − (c0 + ε)t − µ0,A0 + 3ε), which is of the formw0(x − c0t) −
εtw′

0(x−c0t)+εz0(x−c0t)+O(ε2). This accounts for the second solution in (20).
The preceding discussion may have been presented without any algebra. A

shift of lengthε of a soliton profile at timet = 0 has at all later times the effect
of shifting the soliton by the same amount. On the other hand, if the initial
perturbation is an increase of 3ε units in the amplitudeA, the result is a new,
taller soliton whose speed isε units larger than that of the unperturbed soliton.
Hence the perturbed soliton lies ahead of the unperturbed soliton, at a distance
εt that grows linearly witht .
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Let us now turn to the nonhomogeneous variational equation (19). When the
source terms is given byw′

0(x−c0t) and the initial condition is 0, (19) possesses
the solution

tw′
0(x − c0t).(21)

For the source termz0(x − c0t), the solution with trivial initial condition is

tz0(x − c0t)− t2

2
w′

0(x − c0t).(22)

The interpretation of these solutions via Duhamel’s principle is not difficult. A
steady forcing given byεw′

0 in the KdV equation keeps shifting the solitonw0 by
distanceεdt in each time interval [t , t + dt]. These infinitesimal shifts combine
to yield a shift of εt units in the evolution from 0 tot . On the other hand,
forcing steadily with the sourceεz0 in the evolution from 0 tot results in an
O(εt) increase in amplitude. Accordingly, the soliton velocity also increases by
anO(εt) amount, which in a time interval of lengtht induces a change in location
of orderO(εt2).

3.3. The homogeneous linearized equation

For a deeper study of (18) it is convenient to use the moving coordinatesX =
x−c0t , T = t . In the moving frame of reference, the solitonw0(x−c0t) becomes
an equilibrium (i.e.,T-independent) solutionw(X) of the KdV equation.

As a functionE(X,T) = E(x−c0t , t) = e(x, t) of the new variables, a solution
e of (18) satisfies

ET − c0EX + w0(X)EX + w′
0(X)E + EXXX = 0, −∞ < X <∞, T > 0;

we rewrite this differential equation in the form

ET = ∂XL E,(23)

whereL is the second-order linear operator

L E = −EXX + (c0 − w0(X))E.

Pego and Weinstein [16] study (23) in a weighted Sobolev spaceH 1
a . This

consists of all the functionsv(X) such that exp(aX)v(X) lies in the standard
spaceH 1. Furthermore

‖v‖H 1
a

= ‖ exp(aX)v‖H 1.

Here a is fixed in the range 0< a <
√

A0/3. Note that the functionw0(X) and
all its derivatives belong toH 1

a , because, according to (14),w0(X) behaves as
exp(−√A0/3|X|) as |X| → ∞.

The operator∂XL generates a strongly continuous semigroup of operators
exp(T∂XL ) in H 1

a , so that the solution of (23) with initial conditionα ∈ H 1
a is

E = exp(T∂XL )α. Furthermore:
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Lemma 3. (Pego and Weinstein [16] Proposition 2.8) In the space H1
a , 0 is

the unique eigenvalue of the operator∂XL . The geometric multiplicity of this
eigenvalue is 1 and, moreover,ker(∂XL ) = span(w′

0). The algebraic multi-
plicty is 2, i.e., the generalized kernel∪∞k=1ker((∂XL )k) of ∂XL has dimen-
sion 2. This generalized kernel is spanned by the functionsw′

0 ∈ ker(∂XL ) and
z0 ∈ ker((∂XL )2). More precisely∂XL z0 = −w′

0 ∈ ker(∂XL ).

Therefore, in the basisw′
0, z0, the restriction of∂xL to its generalized kernel

is expressed by a Jordan matrix[
0 −1
0 0

]
and (23) has solutionsβ(T)w′

0(X)+γ(T)z0(X) wheredβ/dT = −γ anddγ/dT =
0, i.e., solutions of the form (−c2T + c1)w′

0(X) + c2z0(X). In terms of the original
variablesx and t we recover the linear combinations of the particular solutions
(20).

There is a natural projectionP of the spaceH 1
a onto the generalized kernel:

Pv =< v, η1 > w′
0+ < v, η2 > z0,

where< ·, · > denotes the standard inner product

< v1, v2 >=
∫ ∞

−∞
v1(X)v2(X) dX

andη1, η2 are a basis of the generalized kernel of the adjoint operator of∂XL
chosen in such a way that

< w′
0, η1 >= 1, < w′

0, η2 >= 0,

< z0, η1 >= 0, < z0, η2 >= 1

(biorthogonality). Explicitly:

η1(X) = − 1
2A0

[
tanhZ + tanh2 Z + Z sech2 Z

]
,

η2(X) =

√
3A0

18
sech2 Z ,

where

Z =

√
3A0

6
X.

If Q = I − P denotes the complementary projection ofP, then Q(H 1
a ) is

a complementary subspace of the generalized kernelP(H 1
a ) of ∂XL . It is well

known from operator theory thatQ(H 1
a ) is invariant by∂XL , in the sense that, if

v ∈ Q(H 1
a ) is in the domain of∂XL , then∂XL v ∈ Q(H 1

a ). As a consequence
exp(T∂XL )α remains inQ(H 1

a ) for all T if α ∈ Q(H 1
a ). As noticed above,

solutions in P(H 1
a ) are related to perturbations of the soliton amplitude and
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phase. Solutions inQ(H 1
a ) represent perturbations that take the soliton being

studied out of the two-dimensional family of soliton solutions.
The restriction of∂XL to Q(H 1

a ) has a spectrum consisting of a curve that
lies in the left half plane and is bounded away from the imaginary axis ([16],
Proposition 2.5). This suggests a decaying behaviour for the solutions and, in
fact, Pego and Weinstein show the following result:

Lemma 4. There are positive constants b and C such that for all initial condi-
tionsα ∈ Q(H 1

a ) and all positive times T

‖ exp(T∂XL )α‖H 1
a
≤ C exp(−bT)‖α‖H 1

a
.(24)

For the purposes of this paper the weighted spaceH 1
a is only an auxiliary

technical tool; the main results in Sect. 4 correspond to the standardH 1 norm.
It is easy to check that∂XL generates a strongly continuous semigroup inH 1.
Moreover we have the following estimate:

Lemma 5. There exists a positive constant C such that for all initial conditions
α ∈ Q(H 1

a ) ∩ H 1 and all positive times T

‖ exp(T∂XL )α‖H 1 ≤ C(‖α‖H 1 + exp(−bT)‖α‖H 1
a
).(25)

Proof. Solutions E in H 1 of (23) conserve the Hamiltonian functional ([18],
Sect. 14.7)

J (E) =
∫ ∞

−∞

[
1
2

c0E(X,T)2 − 1
2
w′

0(X)E(X,T)2 +
1
2

EX (X,T)2

]
dX.

We can write (the value ofC is not the same at each occurrence)

‖E(·,T)‖2
H 1 ≤ CJ(E(·,T)) +

1
2

∣∣∣∣∫ ∞

−∞
w′

0(X)E(X,T)2 dX

∣∣∣∣
= CJ(E(·, 0))

+
1
2

∣∣∣∣∫ ∞

−∞
(w′

0(X)e−aX)(eaXE(X,T))E(X,T) dX

∣∣∣∣
≤ CJ(E(·, 0)) + C‖E(·,T)‖H 1

a
‖E(·,T)‖H 1

≤ CJ(E(·, 0)) +
1
2
‖E(·,T)‖2

H 1 + C‖E(·,T)‖2
H 1

a
.

Here we have taken into account thatw′
0(X)e−aX is bounded. It is now sufficient

to estimateJ (E(·, 0)) in terms of‖E(·, 0)‖H 1 and to use (24). ut
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3.4. The nonhomogeneous linearized equation

We only study the equation (19) in the particular case where the sources(x, t)
is of the forms(x − c0t), so that in the moving coordinates, the equation reads

ET = ∂XL E + s(X).(26)

The following result is easily checked by substitution of (27) in (26).

Lemma 6. If s ∈ H 1
a , then the solution E of (26) with initial condition E(T =

0) = 0 is

E(X,T) = < s, η1 > Tw′
0+ < s, η2 >

(
Tz0 − T2

2
w′

0

)
+
∫ T

0
e(T−τ )∂X L Qs dτ,(27)

Note that the first two terms in the right hand side of (27) are a linear
combination of the particular solutions (21)–(22) we discussed above. These
terms provide the projection ofE onto the genera lized kernel of the operator
∂XL and therefore represent changes in soliton phase and soliton amplitude.

In some cases, the integral in (27), i.e, the projection ofE onto Q(H 1
a ), can

be computed explicitly:

Lemma 7. In the situation of the preceding lemma, assume that Qs lies in the
range of the operator∂XL in H 1

a , so that Qs= ∂XL σ for someσ ∈ H 1
a . Then∫ T

0
e(T−τ )∂X L Qs dτ = (I − eT∂X L )σ.(28)

Proof. The expression−e(T−τ )∂X L σ provides an antiderivative of the integrand.
ut

The estimate (25) shows that, forQs ∈ H 1, the integral in (27), having a
bounded integrand, grows at most linearly witht in the H 1 norm. The represen-
tation (28) implies that, ifσ ∈ H 1, then the integral actually remains, for allT,
boundedin the H 1 norm.

4. Main results

Let us now assume that the KdV equation (1) is numerically integrated, with the
initial condition (17) we have been considering, by a one-step numerical method
of orderp. We make the following (reasonable) hypotheses:

(H1) The numerical solutionU n at time tn = n∆t exists, at least for∆t suffi-
ciently small (how small may depend on the value oftn).
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(H2) The numerical solution possesses inH 1 an asymptotic expansion of the
form

U n(x) = w0 (x − c0tn) + ∆tpe(x, tn) + ∆tpR(x, tn, ∆t) ,(29)

where theH 1 function e is independent of∆t and satisfies the varia-
tional equation (19) for a suitable source andR is a remainder such that
‖R(·, t , ∆t)‖H 1 → 0 as∆t → 0.

(H3) The source term mentioned in (H2) is of the forms(x − c0t), wheres is
a C ∞ function of a real variable. Furthermore, as|ξ| → ∞, s(ξ) behaves

as e−
√

A0/3|ξ|.

Only the hypothesis (H3) needs some comments. As explained in Sect. 2,
at the leading order, the source term in the variational equation is given by
`p+1(u(t)), i.e., by the leading coefficient of the local error evaluated at the theo-
retical solution. In the present application, the theoretical solution is of classC ∞,

depends onx and t through the combinationx − c0t and behaves as e−
√

A0/3|x|

for |x| large. Therefore (H3) is a most reasonable hypothesis.
We are now in a position to give the main result of the paper.

Theorem 1. Assume that the hypotheses (H1)–(H3) above hold. Then

U n(x) = w(x − c0tn − µ0 + ∆tpλ1tn − ∆tp

2
λ2t2

n ,A0 +
∆tp

3
λ2tn)

+∆tpρ(x, tn) + ∆tpR̃(x, tn, ∆t),(30)

where

λ1 =< s, η1 >, λ2 =< s, η2 >,

the functionρ is independent of∆t , satisfiesρ(·, t) ∈ Q(H 1
a ) and possesses a

bound

‖ρ(·, t)‖H 1 ≤ Ct,(31)

and R̃ is a remainder such that, for each fixed time t,‖R̃(·, t , ∆t)‖H 1 → 0, as
∆t → 0.

Proof. By (H3) the sources(x−c0t) is such thats ∈ H 1
a ∩H 1. By (27) (rewritten

in the (x, t) coordinates), the functione(x, t) in (H2) is of the form

e(x, t) = < s, η1 > tw′
0(x − c0t)

+ < s, η2 >

(
tz0(x − c0t)− t2

2
w′

0(x − c0t)

)
+ ρ(x, t),(32)

where, for eacht , ρ(·, t) ∈ Q(H 1
a ). The fact that the growth ofρ is at most linear

in the H 1 norm was noticed in the remark following Lemma 7. We substitutee
from (32) in (29). This gives rise to the combination

Numerische Mathematik Electronic Edition
page 433 of Numer. Math. 75: 421–445 (1997)



434 J. de Frutos, J.M. Sanz-Serna

w0(x − c0t) + ∆tp < s, η1 > tw′
0(x − c0t)

+ ∆tp < s, η2 >

(
tz0(x − c0t)− t2

2
w′

0(x − c0t)

)
,

which, by definition ofw0 andz0, differs from

w(x − c0tn − µ0 + ∆tpλ1tn − ∆tp

2
λ2t2

n ,A0 +
∆tp

3
λ2tn)

in O(∆t2p) terms that can be hidden in the remainder.ut
From the theorem we see that the numerical solution consists of three com-

ponents. The first, that we callmodified soliton,has, at each timet , the exact
shape of a KdV soliton profile. However the modified soliton has an amplitude
A0 + (∆tp/3)λ2t that, as the integration proceeds, keeps varying at a steady rate
(∆tp/3)λ2. Furthermore, the modified soliton has a phase that is an error by an
amount∆tpλ1t − (∆tp/2)λ2t2 growing quadratically with t . (Cf. the discussion
following (22).) The amplitude and phase errors in the modified soliton are of
the order of∆tp. The second term in (30), that we callcomplementary error,
represents those numerical errors that, while being of the leading orderO(∆tp),
cannot be interpreted as changes in the soliton amplitude and phase (w lies at
each timet in the complementaryQ(H 1

a ) of the generalized kernel). For instance
∆tpρ may account for the fact that the shape of the numerical solution is not
exactly the same as that of a true KdV soliton. Also∆tpρ may contain a soliton
tail; an issue that we will discuss when presenting the numerical results. Finally
the third term in (30) represents a higher order,o(∆tp) remainder.

When t is large and∆t is so small (relatively tot) that the higher order
remainder may be ignored, the dominant contribution to the error is theO(t2∆tp)
phase error; the amplitude error and the complementary error∆tρ only grow
linearly with t .

Let us now relate Theorem 1 and the conservation laws. As discussed in
Sect. 2, all sensible methods exactly conserve the massI1, because this is a
linear functional. Accordingly (Lemma 2) we expect that the sources(x − c0t)
be orthogonal, for eacht to the gradient of mass. Now the gradient of mass is
formally given by the function 1, because

I1(u0 + εv) = I1(u0) + ε < 1, v > .

Therefore, we expect, for any reasonable method,< 1, s >= 0, or in other words∫∞
−∞ s(ξ) dξ = 0. Similarly the gradient of energy at the solitonw0(x − c0t) is

the function 2w0(x − c0t) and hence for methods that conserve exactly energy
< s, w0 >= 0. By Lemma 2, the same orthogonality relation is expected to hold
for methods of orderp that, when integrating the soliton, produce global energy
errors of orderO(∆tp+1). For conservative methods the estimates in Theorem 1
can be improved considerably.

Theorem 2. Assume that the hypotheses (H1)–(H3) above hold and that the
source s satisfies the ‘conservation properties’< s, 1 >=< s, w0 >= 0. Then
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U n(x) = w(x − c0tn − µ0 + ∆tpλ1tn,A0)

+∆tpρ(x, tn) + ∆tpR̃(x, tn, ∆t),(33)

where

λ1 =< s, η1 >,

the functionρ is independent of∆t , satisfiesρ(·, t) ∈ Q(H 1
a ) and possesses a

bound

‖ρ(·, t)‖H 1 ≤ C ,(34)

and R̃ is a remainder such that, for each fixed time t,‖R̃(·, t , ∆t)‖H 1 → 0, as
∆t → 0.

Proof. The functionsw0(x − c0t) and η2 differ in a multiplicative constant, so
that the hypothesis< s, w0 >= 0 impliesλ2 = 0 in (30).

On the other hand, we are going to prove that the projectionQs is in the
range of the operator∂XL (in H 1

a ), so that Lemma 7 applies, leading to the
boundedness ofρ in the H 1 norm.

We begin by showing that

< Qs, 1 >= 0.

In fact, by definition ofQ = I − P,

< Qs, 1 >=< s, 1 > − < s, η1 >< w′
0, 1 > − < s, η2 >< z0, 1 >;

the first and third term in the right hand side vanish because of the hypothesis
on s, the second vanishes because< w′

0, 1 >= 0.
Once we know that the integral ofQs vanishes, it is clear that

Λ(X) =
∫ X

−∞
(Qs)(ξ) dξ

is a smooth function that lies inH 1
a ∩H 1 and such that∂XΛ = Qs. It remains to

show thatΛ is in the range ofL , or, in other words, thatΛ is orthogonal to the
kernel of the adjoint operator. This kernel is precisely the span of the function
w′

0. By integration by parts,< Λ,w′
0 >= − < s, w0 >= 0 and the proof is ready.

ut

Note that in this case the modified soliton keeps the correct amplitudeA0 and
has a phase error that only growslinearly with time. Also the complementary
error remains bounded. The most harmful direction that the source term may
have is that of the soliton profilew0 (i.e., that ofη2). It is the component of
s in this direction that excites the quadratic growth explained in the discussion
following (22). Preservation of energy ensures thats has a vanishing component
in this harmful direction.
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5. Numerical examples

5.1. Schemes being compared

We consider the family of singly diagonally implicit Runge-Kutta (SDIRK) meth-
ods

γ 0
1− 2γ γ

1
2

1
2

,

i.e., the methods that integrate (2) according to the recipe

U n+1 = U n +
∆t
2

[f (U ∗) + f (U ∗∗)],

where the stage vectorsU ∗ and U ∗∗ are obtained by successively solving the
equations

U ∗ = U n + ∆tγf (U ∗),

U ∗∗ = U n + ∆t(1− 2γ)f (U ∗) + ∆tγf (U ∗∗).

Note that both equations are very similar to the equation to be solved at each
step of the familiar implicit Euler scheme.

Only two values of the parameterγ will be considered:

(i) γ = 1/2. In this caseU ∗∗ coincides withU ∗ and there is really only one
system to solve per step. The method then reduces to the familiar midpoint
rule

U n+1 = U n + ∆tf (
1
2

(U n + U n+1))

(see [18], Sect. 3.3.2). The method has orderp = 2, is A-stable and conserves
(see [5]) quadratic invariants such as the energyI2.

(ii) γ = (3 +
√

3)/6, yielding a third order (p = 3), A-stable method discovered
by Nørsett and Crouzeix (see [11], Chapter II, Table 7.2 and [12], Chapter
III, Table 6.3). The method, which we denote by SDIRK3, doesnot conserve
quadratic invariants.

The purpose of the experiments to be reported below is to illustrate the
preceding theoretical results, rather than to establish a comparison between the
practical performance of both integrators. For such a comparison to be meaning-
ful, one should look at the errors yielded by the methods when both are using the
same amount of computational time. However below we run the methods with
equal values of∆t and this is biased in favour of the SDIRK3 integrator, which
requires more work per step.

The validity of the hypotheses (H1)–(H2) may be established by standard
analyses. On the other hand, it is easy to check that the leading terms of the
local errors of the methods satisfy the requirements in (H3). Furthermore it is an
exercise to show that for the midpoint rule both< s, 1 > and< s, w0 > vanish,
while for the SDIRK3 scheme< s, 1 >= 0 but< s, w0 >/= 0.

Numerische Mathematik Electronic Edition
page 436 of Numer. Math. 75: 421–445 (1997)



Accuracy and conservation properties in numerical integration 437

5.2. One soliton experiments

Our first group of experiments corresponds to the motion of a single soliton
analyzed in Sect. 4. We fix the soliton parameters at the valuesA0 = 12 (velocity
c0 = 4) andµ0 = −10 and integrate fromt = 0 to t = 10. The soliton thus travels
from x = −10 to x = 30. To implement in practice the semidiscrete schemes
under consideration we discretize accurately the spatial variable on a fine grid
so that all errors to be reported correspond to the time-stepping schemes. We
compute the spatial derivatives by a Fourier pseudospectral approximation with
256 modes in the interval−20≤ x ≤ 60 (see, e.g., [6] for details). The errors
introduced by the exponentially accurate space discretization are negligible; this
was checked by refining the spatial grid.

Fig. 1. L2-error againstt . Solid line: midpoint rule; broken line: SDIRK3. The time steps are∆t =
1/40, 1/80, 1/160

Figure 1 gives, in a log-log scale, theL2-norm of the global error as a function
of t . The solid lines correspond to the midpoint rule and the broken lines to
SDIRK3. Shown are the runs corresponding to∆t = 1/40 (× signs), 1/80
(circles) and 1/160 (⊗ signs). By examining the distance between the three
parallel lines corresponding to a given method, we conclude that errors at a
given value oft behave as∆t2 for the midpoint rule and as∆t3 for the SDIRK3
scheme. Thus these are accurate integrations where∆t is small enough (given
the values oft) for the errors to show their expected asymptotic order. Further
confirmation can be obtained from Table 1 that presents the errors at the final time
t = 10. The slopes of the lines in Fig. 1 reveal that for the midpoint rule errors
grow like t (cf. Theorem 2), while for SDIRK3 they grow liket2 (cf. Theorem 1).

For any fixed value oft and small enough∆t the third order scheme will
give smaller errors than the second order scheme. In Fig. 1 we see that, att = 1,
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Fig. 2. Midpoint rule with∆t = 1/40 at t = 10. True soliton (solid line), modified soliton (broken
line) and numerical result (crosses)

the crossover value of∆t is around 1/160 and then the size of the error is
approximately 5× 10−5. Since the norms of the errors behave asK1t∆t2 and
K2t2∆t3, the crossover value of∆t behaves like (K1/K2)t−1. Hence att = 10
the crossover value would be of the order of 5×10−4, when both methods would
yield errors of about 5× 10−6. We conclude that, when integrating up tot = 10
or beyond with realistic values of∆t , it is not advisable to use the third order
scheme.

Let us now investigate in detail the structure of the error, beginning with the
midpoint rule. We have computed the coefficientλ1 that features in the modified
soliton in (33) and theL2-norm of the difference between the computed solution
U n and the modified soliton. According to (33) we are then measuring the size
of the complementary error plus the remainder. The results at the finalt = 10 are
displayed in Table 1. Two things should be noted. First, the errors with respect
to the modified soliton are two orders of magnitude smaller than the true errors
(‘computed minus true’). In other words, the bulk of the error in the numerically
computed soliton corresponds to the phase shift∆t2λ1t . Thus the numerically
computed soliton possesses essentially a true KdV soliton profile (14) and keeps
the right amplitudeA0 while travelling at an erroneous speedc0 −∆t2λ1. This
is confirmed by Fig. 2 that shows, att = 10, the true soliton solution (solid
line), the numerical solution (crosses) and the modified soliton (∆t = 1/40). In
Fig. 3 we have again displayed the computed solution att = 10 but now with a
vertical scale blown-up by three orders of maginitude. We see that the computed
solution consists of a numerical soliton along with a small amplitude oscillation.
No soliton tail appears
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Fig. 3. Midpoint rule with ∆t = 1/40 at t = 10. Numerical solution. The vertical scale has been
magnified by three orders of magnitude

Fig. 4. L2-error with respect to the modified soliton againstt . Midpoint rule with∆t = 1/160

Table 1.

Midpoint SDIRK3

∆t Error Error-mod Error Error-mod

2.50E-2 8.44E-3 6.45E-5 2.76E-1 1.69E-2
1.25E-2 2.12E-3 1.59E-5 3.66E-2 5.04E-4
6.25E-3 5.31E-4 4.26E-6 4.62E-3 3.62E-5
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The second thing to be noted in Table 1 is that the errors with respect to the
modified soliton show anO(∆t2) behaviour. This indicates that, for the small
values of∆t considered, the complementary error dominates over the higher
order remainder. In fact for the midpoint rule, the remainder∆t R̃ is expected
to be specially small. It should behave aso(∆t3) rather than aso(∆t2): since
the method is symmetric only even powers of∆t appear in the expansion of the
global error ([11], Chapter II, Theorem 8.10). In Fig. 4 we have plotted the norm
of the error with respect to the modified soliton for∆t = 1/160. As we have
just discussed, this essentially corresponds to the norm of the complementary
error∆t2ρ. The bounded behaviour predicted by (34) is clearly borne out. The
complementary error here is due to the numerically computed soliton not having
exactly a true KdV profile (1). In the figure we see that at an initial transient
regime the soliton shape evolves from the true KdV shape it possesses att =
0 to the ‘numerical’ shape. In this transient, the complementary error builds
up. After the transient, there is no further change in the soliton shape and the
complementary error stops growing. This concludes our study of the midpoint
rule results in the one soliton solution.

For the SDIRK3 method, Fig. 5 shows, att = 10 the true soliton solution
(solid line), the numerical solution (crosses) and the modified soliton (∆t =
1/40). We see that, within plotting accuracy, the computed solution coincides
with the modified soliton, i.e., the complementary error and the remainder are,
again, negligible. Now, according to Theorem 1, there are two sources of error
implicit in the modified soliton: a smallO(t∆t3) amplitude damping (λ2 < 0)
and a comparatively largeO(t2∆t3) phase shift. Both effects are clearly visible
in Fig. 5.

Fig. 5. SDIRK3 with ∆t = 1/40 at t = 10. True soliton (solid line), modified soliton (broken line)
and numerical result (crosses)
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Fig. 6. SDIRK3 with∆t = 1/40 att = 10. Numerical solution. The vertical scale has been magnified
by three orders of magnitude

In Fig. 6 we have again displayed the computed solution att = 10, but now
with a vertical scale blown up by three orders of magnitude. A soliton ‘tail’ is
apparent (cf. Fig. 3). The height of the tail is of about 3× 10−3 and does not
increase witht . The tail ‘begins’ at the locationx = µ0 where the soliton started
and ‘ends’ at the current soliton position. The existence of the tail and the value of
the height can be predicted by soliton perturbation theory (see e.g. [14]), because,
as shown by (7) and (19), numerical discretization amounts to a perturbation of
the differential equation. The mechanism leading to the development of the tail
is as follows. The amplitude of the modified soliton keeps decaying at a rate
|∆t3λ2/3|. Hence (cf. (16)) the modified soliton keeps losing its massI1. Since
the numerical solutionU n is mass conserving (< s, 1 >= 0), the mass lost in
the modified soliton must be gained somewhere. In fact the constant tail height
is such that the mass in the trailing tail increases at the same rate as the mass in
the modified soliton decreases (cf. [10]).

Figure 7 is a plot of error with respect to the modified soliton against time
(∆t = 1/160). This includes the complementary and remainder errors. The linear
growth predicted in (31) and due to the tail is apparent. The same plot at∆t =
1/80 or 1/40 (not shown in the paper) shows, fort close to 10, an error growth
higher than linear. This is explained as follows. An analysis similar to that leading
to Theorem 1 reveals that the main part of the remainder∆t R̃ consists of an
additionalO(t2∆t4) phase shift. The complementary error, behaving asO(t∆t3),
is likely to be hidden by the remainder whent is large and∆t moderate. In fact,
the last column of Tab. 1 does not show anO(∆t3) behaviour, which suggests
that, for the range of values of∆t considered, the remainder is not small relatively
to the complementary error.
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Fig. 7. L2-error with respect to the modified soliton againstt . SDIRK3 with∆t = 1/160

5.3. Soliton interaction

We have also performed experiments to investigate whether the advantages of
conservation borne out in the preceding subsection and backed by the analysis
in Sect. 4 for one soliton solutions also hold for more general solutions.

We studied the interaction between two solitons of amplitudes 12 and 6. We
worked in a time interval 0≤ t ≤ 20; this is long enough for the solitons
to interact and to emerge from the interaction (for the single soliton solution
we took a shorter interval 0≤ t ≤ 10). We employed a spatial interval of
length 130 and the pseudospectral method with 512 Fourier modes. This en-
sures that the spatial discretization errors are negligible. The grid spacing is now
130/512≈ 0.25, slightly smaller than the spacing 80/256≈ 0.31 used for the
single soliton experiments. Figure 8 shows error versus time for the midpoint
rule, ∆t = 1/40, 1/80, 1/160. The error grows linearly before and after the in-
teraction. For the SDIRK3 method (Fig. 9) the growth is quadratic. Note the
different vertical scales in Figs. 8–9; the superiority of the conservative scheme
is clear.

6. Conclusions and extensions

We have analyzed in detail the behaviour of the leadingO(∆tp) term of the
global error in the time integration of the KdV soliton. The most harmful com-
ponent of that error is a quadratic phase error which is excited by the projection
onto the energy gradient of the leading term of the local error. In the case of
energy conserving schemes the quadratic growth is therefore absent. Conserva-
tion properties thus have a big impact on the global errors in the numerical
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Fig. 8. Soliton interaction with the midpoint rule.L2-error againstt . The time steps are∆t =
1/40, 1/80, 1/160
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Fig. 9. Soliton interaction with SDIRK3.L2-error against t . The time steps are∆t =
1/40, 1/80, 1/160
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solution. An example was presented where a conserving second-order scheme
gives, for all realistic values of∆t , more accurate results than a nonconserving,
third-order scheme, in spite of the fact that the higher order method has smaller
local (truncation) errors.

The error estimates presented here show linear or quadratic error growth.
This should be compared with standard estimates that growexponentiallywith t .
This improvement is possible by restricting the attention to particular solutions
(solitons) and carefully analyzing the corresponding variational equation.

Our analysis can be extended in many ways. It is straightforward to study the
structure of the termsO(∆tp+j ), j = 1, . . . , p − 1 of the expansion of the global
error. All these terms satisfy the variational equation (19) with sources that, for
energy-conseving methods, are orthogonal to the energy gradient, cf. Lemma 2.

As a second, relatively easy, generalization we could have considered fully
discrete methods or methods with discretex and continuoust : the error propa-
gation equation for all those methods is still (19).

Finally, more general equations can be considered. The analysis by Pego and
Weinstein [16], which is the basis of our results, applies to the case where the
termuux is replaced by other nonlinearities of the formf (u)x , so that catering for
this more general case would have been a simple matter. We strongly believe that
the extension to even more general families of equations having solitary wave
solutions with amplitude-dependent velocity is possible. Of course the extension
of our analysis would require a deep analysis of the linearized equations, as that
carried out in [16] for the KdV-like case.

An interesting question raised by one of the referees is whether it is possible
to construct schemes with〈s, 1〉 = 〈s, w0〉 = 〈s, η1〉 = 0. According to Theorem
2 those schemes would have, for a single soliton solution, a leading error term
bounded in time.
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