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1 Introduction

“The last decade has seen such a deluge of papers on the numerical solution
of the initial value problems for ordinary differential equations that it is quite
impracticable to list, far less to summarize, all the contributions.” These arc
the opening words of J. D. Lambert’s paper [54] in the State of the Art 1976
Conference Proceedings. In spite of such a disclaimer, the paper succeeds in
presenting. in less than fifty large-print pages, a unified view of all that, at the
time of its writing, was known on numerical initial-value problems (1VP) for
ordinary differential equations (ODEs). Ten years later, the subject was just
too big and although the State of the Art 1986 Conference [50) featured three
ODE speakers (J.D. Lambert, A.R. Curtis and G. Wanner), their combined
contributions are very far from surveying all the numerical ODE field. After
another decade of growth in the subject, the present paper must limit itself
to the presentation of an individual topic, geometric integration, without any
ambition of being exhaustive. We have tricd to convey Lo the reader a feeling for
what we sce as a new way of doing numerical ODEs. We have also tried to direct
him or her to the relevant literature, but we have not considered it possible to
present detailed mathematical arguments.

Before defining geometric integration let us place oursclves in the classical,
1976 State of the Art Conference point of view. Considered then were two
situations, “general” and “stiff”. For general problems, Lambert [54] perceived a
“consensus of opinion on what are the ‘best’ methods” and reported that “some
highly tuned and thoroughly tested packages” were available. The stiff ficld
was not nearly as mature with “new methods ... continually being proposed™,
and, as a consequence, we were not “yet at the stage of being able firmly to
recommend ‘best’ packages.”

Given an initial valuc problem

v=fly), ¥0)=aecRP (1.1)

(a dot represents differentiation with respect to time t), in 1976 we had
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o A well defined goal. This was to find as cheaply as possible within the
desired accuracy the vectors y(t;) al some prescribed output locations.

o A tool to achieve the goal. This was a package, or rather a couple of them,
general/stiff, in which to plug the subroutine evaluating f. The general
package dealt with all general f's and the stifl package dealt with all stiff

f's.

o A theorelical framework to design/understand the tool. This included two
main groups of ideas (i) cousistency, local error, error constants, (i) sta-
bility, error propagation, stability region.

The second of the items above deserves some comments. Surely, twenty years
ago people were aware of the limitations of solving everything with two packages.
Lambert mentioned “special classes of 1VPs ... such as problems with periodic
solutions” and regretted that they “received relatively little attention.” (Was
“relatively” a slight understatement when only one paper on special classes was
quoted in [54]?) While Lambert aptly concluded that “where there is structure,
we ought to be able to use it in the numerical methoq " for the nu merical analyst,
the field of special problems was 4 large, completely uncharted land,

The classical approach outlined above has clearly made an outstanding con-
tribution to the solution of scientific problems. But, as all human things, it has
limitations. These will be illustrated in two examples.

In July 1992, the pretigious journal Science featured in its Rescarch News
section [52] the announcement that “From Mercury Lo Pluto, Chaos pervades
the solar system”, as borne out by a numerical integration by Sussman and
Wisdom [102] of the planelary equations of molion over & time span of nearly
100 million years. Does this widely publicized numerical ODE integration fall
within the classical paradigm?

« The aim was not to compute accurately the state of the solar system after a
long time; it was rather a matter of deciding whether the motion is regular
or chaotic. When comparing results of different integration techniques in
this sort of study, it was observed [115) that “the plots are remarkably
similar”, a clear indication that the authors had no illusions of having
achieved any accuracy in a conventional sense, i.e. of having achieved small
global errors.

« The tool was a special purpose splitting method, tailored to the problem
at hand.

« The too! was designed through considerations that went a long way beyond
the classical consistency/stability approach.

The second example concerns the simulation of the dynamics of biomolecules
(10}, a matter of integrating Newton's sccond law for the motion of the atoms
in the molecule (the number of atoms could be as high as 10,000 ov 100,000 and
there are six differential equations per atom).

Geomelric Integration 123

e The aim is to obtain information on things like average cnergies, confor-
mational distributions, large-scale protein bending, ctc. There is no hope
of computing the solution with any accuracy: perturbations to the system
being integrated typically double in size every picosecond and current sim-
ulations may cover time intervals of 1000 picoscconds. Furthermore the
initial velocities are unknown and assigned randomly. Also the expressions
currently used for the interatomic forces are only approximations that in-
volve fitting parameters semiemperically.

e The current method of choice, leapfrog (known in molecular dynanics as
Verlet [3]), is far away from the notion of package of the classical paradigm.
Even if conventional packages could be applied to such a large problem, it
is unlikely that they would outperform the simple leapfrog method.

o The success of the leapfrog method cannot be explained via the tradilional
ideas of stability and consistency. The scheme is only second order accu-
rale. Being only marginally stable for linear forces and small time-steps,
one would fear that the smallest nonlinearity could make it unstable (sce
[87,95] for a discussion).

2  Mathematical preliminaries

In this section we present the notation that will be used throughoul the paper.
We also include some background inaterial that will later simplify the discussions.

2.1 Vector ficlds, flows and Lie operators

Each system of differential equations v=J(yhVE RP is defined by a veclor
field f [2,79). With each system/vector field we associate its flow ¢y,; [2.6,79].
For each value of the real parameter ¢, ¢,y Mmaps RP in RD in such a way that
¢4, (a) is the value al time ¢ of the solution of the system with initial value o
at time 0. Thus, for fixed o and varying {, $e, () is the solution of the initinl
value problem Equation 1.1.

Also associated with the field f is the Lic operalor Ly [2,6,79]). This maps
each real-valued function F defined in RP into the real-valued function Ly - F°
such that, for y € R,

(L)) = he oF

(W) + -+ fo() 57— ()

on dyp

(Subscripts denote components.) Clearly, for each o € RP and cach real f,
. d .
(Ly - F)¢ry(a)) = HZ?_;QVV. (2.1)

By recursively applying Equation 2.1 with \\w:_ P k= 2.3, i dicw ol
we conclude

«»
(L - F)(dey(m) = N“,:.Zg..\?:.
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and evaluating these derivatives at time t = 0 we arrive at the following formula
(79)
00 N» hw
Pl = | [t ) -7 (@) = (il P, (2.2)
k=0
for the Taylor expansion of F along the solution of the IVP Equation 1.1. Par-
ticularization of Equation 2.2 to the case where F is the mapping that associates
with each y its ith component yi, i=1,...,D, provides the Taylor expansion of
each of the components of the solution ¢ s(a)-

Given two Lie operators Ly and Ly, their commufafor Ly, Lyl =
LyLy — LgLy turns out to be the Lie operator associated with a third vec-
tor field called the Lie or Lie-Poisson bracket [2,6,79) of f and ¢ and denoted by
[f.9). The jth component of {f,¢] is given by

2.2 The Baker-Campbell- Haussdorfl formula

The wwrcq-Ow:_zcn:-:c:mmmoqq (BCH) formula [113] has recently played an
important role in the analysis of munerical methods.

Let X and Y be “symbols”. (We later think of these as Lie operators, but
this is not necessary for the prescent.) We form the exponentials

(- b
H \/» = - ~~:“~\u.»l\.,_ .....
exp (X) b X g N g N
1,2 1
exp(Y) = ~+<+m<-+m<u+.:
and we multiply them out
w n ]
exp(X)exp(Y) = ~+>\+<+m\.+>\%+_m4£
Toa, Ly 1ovo, bes
+m> +w> <+w\3 +a« + -

According to the BCH formula, the product exp (X)exp(Y) can be written as
the exponential exp (Z) of a new symbol

1
Z = x+<+m_x_5+mm:x.\fféifé
1 1
2y \/\|| VAR VARV .\\ \.\\.‘«‘ -
+ XYY - Y.V, Y, X)+ [V, XN, XL YD)
M 7 ’ 7 "
+w.mno?_x.x.x.:ix.:;fé

1
+ M.wloﬁ\,m.k.%.u\li+c\_<_>..\<,<:+ (2.3)
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Here [X, Y] is the commutator {X, Y] = XY - ¥ X and we use iterated commu-
tators [X, X, Y] = [X, (X,Y]), (XYY, X] = vy Xl etes s remarkable
that Z only consists of X, Y and commutators. In particular, it N and Y are
Lie operators Ly, Ly, then Z is a new Lie operator: the operator associated with
the vector field f+ g+ (1/DUf.g]+ where now the brackets represent the
Lie-Poisson bracket of vector fields as discussed above.

2.3 Numerical methods

Throughout the paper we ignore multistep pumerical methods. This is due
to the fact that the literature we try to survey has almost exclusively dealt
with one-step integrators (sec (30] however). Each one-step numerical method
induces [92] a one-parameter family ¥a s of maps in RP in such a way that
¥n y(a) is the numerical solution after one step of length h starting from the
initial condition «; for instance Euler’s method has ¥a s (y) = v+ hf(y). Tor
a numerical method to make sense it is nccessary that ¥y s approximales ¢y g
for small h; the order of the method is defined as the (highest) positive integer
r such that ¥ s (¥) — éns(y) = O(h ') as h — 0 for cach y € RP and cach
smooth f. A method is consistent irr> 1

Given an VP Equation 1.1 and a step-length i > 0, the mnmerieal wethod
obtains approximations y" Lo the true solution values y(ty) corresponding to the
gridpoints {,, = nh,n=01,... Th pumerical solution is recursively defined
by ° = @, o= Py (y™) n = 0.1,..., {for the true solution y(fu41) =
dn. g (y(1,))). Fora method of order v, the global errors a, = ulty,) ave O(07)
uniformly in bounded time-intervals. The extension of these constderations to
variable steplengths hy is straightforward.

For Taylor, Runge-Kutta (RK) and multiderivative Runge-Kutta methods,
the expansion of ¥,y in powers of h is a B-series [11,46]

y+ 2R L (I F(r))- (2.4)

n=1 r€RT, QT‘V

Here RT, denotes the set of rooted trees with n-vertices and, for each rooted
tree T, o(7) is the number of symmetries of T, F(7)(y) denotes the corresponding
elementary differential evaluated at y and c(7) is a real coefficient depending only
on the numerical method. For an RK method with weights b and coeflicients
a;;, the'¢’s corresponding to the trees of orders one and two are 5 bi M”:. b;a;;.
(The B-scries Equation 2.4 has been normalized as in [11] or [72]; a different
normalization is used in {46], cf. {12].)

The expansion Equation 2.4 is the key to writing the conditions for the cor-
responding method to have order r. Indeed the truc solution has an expansion
of the form Equation 2.4 with the coefficients c(r) replaced by 1/(7), where
¥(r) is an integer called the density of 7. By imposing that the expansions of
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the numerical method and the true solution coincide except for O(hmt!), one
concludes that a method is of order r if and only if

e(r) = ! re R, n=1, ... (2.5)

For an RK method these conditions read Yoibi =1, 00 e = 1/2, etc.

For methods that partition the components of y and treat differently dif-
ferent components, including Partitioned Runge-Kutta (PRK) methods [92] and
Runge-Kutta-Nystrom (RKN) methods, B-series have to be generalized to
P-series [46,72]). For methods based on decompositions of [ into N parts, the
relevant generalization is called N B-series {5].

3 New error analyses

In recent years it has become increasingly clear that there is a need for making
sense of numerical results that have little or no accuracy in a conventional sense,
i.e. whose global errors are large. As pointed out in the introduction, there are
many instances where scientists have benefited from the use of numerical ODE
solvers and yet it is impossible to get numerical resulls with smali global errors.
Similar situations have appeared before in numerical analysis and backward error
analysis has been most useful. In a backward error analysis the question is
not how big is the difference between the exact and computed solutions; one
rather shows that the computed solution solves exactly a problem P that is a
perturbation of the problem P onc wants Lo solve and then trics Lo estimate the
difference between P and P. In our context, backward crror analysis could show
that the effect of using a numerical method is to change slightly the IVP being
solved. Such a conclusion would be particularly useful in applications, as those
mentioned in the introduction, where there is an inherent uncertaintity in the
model, i.e. in the exact values of f and a.

Many recent papers in numerical ODEs have compared the numerical solution
y" of the IVP Equation 1.1 with the values §(tn) of the solution of a neighbouring
IVP. One succeeds in obtaining bounds for y" —§(tn) that are much smaller than
those that can be derived for the conventional global error y" — y(a)- While
several of those papers use the terminology “baciward error analysis”, one is in
fact dealing with a mixed forward/backward error analysis strategy; there is a
backward component because a perturbed problem is introduced and there is
a forward component because the numerical solution and the exact solution of
the perturbed problem are not quite the same and one has Lo estimate their
difference.

Since the IVP Equation 1.1 is specified by two items f and a, one may
perturb it by changing either the vector field f or the initial condition a. The
two possible perturbations respectively lead to the ideas of modified equations
and shadowing.

An early important reference on the “backward” approach is Eirola [20].
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3.1 Modified equations

For partial differential equations, the method of modificd equations has heen
known for a long time as a valuable tool to investigate the behaviour of numerical
solutions. A classical reference is [114] and a more rigorous approach niay be
scen in [42). _

In our context, a modified systemn (of order N)y = [nly) for a micthod ¢y s
is a system for which ¥y — ¢, = = O(hN+'). For the solution flow of the
system y = f(y) to which the method is being applied, ¥ s — ény = o™+,
with = the order of the method and therefore, if r < N, the flow of the modified
system provides a better description of ¥ s than the true flow does. In lact,
if §(t) denotes the solution of the modified system with initial condition o (see
Equation 1.1), then the numerical solution satisfies y* — H(fa) = o(h").

It is obvious that the modificd vector ficld Nz lias to depend on the parameter
h, but this dependence has not been incorporated to the notation. It is casy to
construct, for any given N and method ¥4.s, a modified vector field fn of order
N. The casiest possibility is to look for NZA.S as a polynomial in h of degree N

Fuw) = 2+ hf ) + -+ 0N 1Y (),

where the f/* do not depend on h. It is clear that a method is consistent if and
only if f° coincides with the true f. In a similar manner, a consistent miethod
s of order > 1ifand only if /1, ..., /77! vanish. Ttis also casy to guess thit
the f™ do not change with the order of the approximation being sought. Then
it is possible to construct a formal power serics

POy + b ) + D)+ (1)

whose truncations coincide with the .\42 's.

When the method can be expanded in a B-serics Equation 2.4, Hairer [13]
shows that the f™ can be written of terms of the clementary differentials of f.
Indecd Hlairer shows that the formal power serics Equation 3.1 is a B-series

O D PR ) (3.2)
n=1

rERT, o(r)

and provides a systematic way to construct the cocficients b(r) [rom the B-series
coefficient c(r) of the method Equation 2.4. An alternative derivation of Hairer’s
result was given in Murua's thesis [72] (see [15,90]). Note that the consistency
of the method translates into the requirement. that, for the trec with one vertex,
b(r) = 1, and that, for consistent methods, order ¥ > 1 is equivalent to b(r) = 0
for trees of orders 2,...,7. This provides an alternative to Equation 2.5 when
writing the order conditions for the method.

Ideally one would like to have an “oxaclt” modified system y = .ES_ for
which ¥a.; = éh,so- For linear problems fes is casily constructed, see Beyn [8]):
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However for nonlinear situations, the solutions generated by the mapping ¥n.y
may possess features thal cannot be present in the ~olutions gencrated by flows
of differential systems (87]. For instance, in two dimensions, a mapping ¥ may
generate chaotic orbits, while no solution flow is chaotic. For this reason it is
impossible to exactly interpolate the numerical solution by a suitable Phfoo-
The problem of how close can a smooth invertible mapping ¥,y be approxi-
mated by flows of differential equations is well known in dynamical systems (65].
‘We saw above that O(hN+Y) approximations are easily constructed for any N.
Neishtadt [74] was the first in rigorously proving that an “optimal” h-dependent
modified vector field w. for which the discrepancy between Yu,y and s?ﬂ is ex-

ponentially small (see also [28]). This optimal f can be obtained by truncating
the series Equation 3.1 (which in general diverges) after a suitably chosen num-
ber of terms that increases as h — 0. Two recent papers {7,44] provide new
proofs of the exponential smallness of the error with respect to the flow of the
optimal modified vector field. These papers also present a number of valuable
applications.

3.2 Shadowing

In shadowing, the computed solution y" of the IVP Equation 1.1 is compared to
the exact solution values ji(t,) of the IVP given by the differential cquation being
solved y = f(y) along with a perturbed initial condition (0) = &. The idea of
shadowing is well known in dynamical systems; its applications to numerical IVP
in ODEs prior to 1993 are surveyed in the paper [93] and lack of space prevents
us from repeating that material here. Recent references, not covered in _wur are
T.whlwﬁum.um.g.ﬂ;S_A

4 Composition methods

Many of the methods used in geometric integration are composition methods, i.e.
their associated mappings ¥a,y are a composition of simpler mappings.

« Sometimes one is given a method ew@ (the basic method) and constructs
a new method

B B B
Yry = &w.‘_f\ oﬁw.m_?\ 0--:0 %ml_..\. 4.1)

where the b; are suitable real constants chosen in such a way that ¥y s is
of higher order than s_..m.w\_. In practice, the basic method lhas a favourable
geometric property and Tow order. 1f the geometric property is preserved

by composition, the new ¥y will share it.
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o Often (sce [5] for a discussion) the right-hand side function [ can be written
in a natural way as a sum of several, say two, contributions f = [0+ JiKR
and one may construct an integrator ¥ny by combining steps of a method
xn s for the system y = fUl(y) and steps of a method my i for the

system 3 = fP)(y),
Why = Ty pg19 O Xg,hgh 00 Ty n.g10 © Xayh gt (4.2)

An important particular case is that where the systems y = FU(y) can be
integrated in closed form and x and = are laken to be the corresponding
exact flows. Then the method reads

Yh,y = Gy h, 01 © Pa,h g1 00 Gy, n g1 © Payn g (1.3)

These splitting integrators are of course well known; the different parts
of [ often correspond to physically different contributions, say different
reactions in chemistry or different forces in mechanics.

When s is a composition of simpler mappings, its propertics may be inves-
tigated through the BCH formula Equation 2.3. The methodology is as follows.

e Construct modified systems \42.., of order ¥ for the individual mappings
being composed in Equation 4.1 or 4.2 (here the index i labels the mappings
¥; being composed). Then (ignoring O(WN+1) error terms), each ¥y is the
h-flow of the corresponding Ini.

o Wrile, by means of Equation 2.2, the flows of the N,..._..m as exponentials.

o Use the BCH formula to combine all the exponentials into a single expo-
nential oxv?h\\.‘zv" in doing so, care must be taken of the right order of

the factors, see [92]. From the exponent >~¢«z. one recovers an (order N)

modified system .m‘z for the overall method. The propertics of the method,
including the order of consistency r, are then retricved from fv.

It can be shown [116] that, if in Equation 4.1 the basic method is of order
two, then, for any prescribed r, it is possible to choose the number of stages s
and the weights §; so that the composition ¥p,s achieves order r,

Suzuki [103-111) was among the first in studying composition methods. Fur-
ther useful references in connection with this approach are (41,60,68.69.81].

The discussion of composition methods will be continued later.

5 Symplectic integration

Symplectic methods for Hamiltonian problems have been the most studied family
of geometric integrators. In the opening chapter of their 1987 collection of papers
on Hamiltonian problems [66], MacKay and Meiss wrote: “Another neglected
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problem is the development of computer algorithms which respect the symplectic
nature of the Hamiltonian”. That situation changed quickly. Only a few years
later, the field of symplectic integration had grown large enough to deserve a
section in the second edition of the treatise by Hairer, Ngrsett and Wanner [46]

and even a monograph {92].

5.1 Hamiltonian systems

Suppose that the dimension D of Equation 1.1 iseven D = 2d and write y = (p,q)
with p,q € R?. Then the system in Equation 1.1is a Hamiltonian problem [6,66]

if and only if f is of the form
[yy=J"'VH (5.1)

for a suitable real-valued function H = H(p,q) (the Itamiltonian function). In
Equation 5.1 ¥ is the operator

8 8 8 9 0 a\"

Bp Opa’ " Opa’ B0y Baa T Baa)

and J is the skewsymmetric matrix

_[0a la
r=2 el (5.2)

The quantity H is conserved along the solutions of the corresponding Hamil-
tonian system [92]. This often corresponds to the principle of conservation of
energy.

If the vector fields f and g in R24 are both Hamiltonian, i.e. f = J-IVH

- and g = J™!VG, then the Lie-Poisson bracket [f, g] is also 8 Hamiltonian vector
field. The corresponding Hamiltonian function is given by —{H,G} (note the

sign!), where [6,92]
a1 oc¢ o1l 9G
HGy =S S5m0 -
{ ) MU d; Op;i  Opi Ogi

is the Poisson bracket of Hamiltonian functions. There is a correspondence be-
tween fields+Lie-Poisson bracket, Lie operators-+commutator and Hamiltonian
functions+negative Poisson bracket. The reader should be warned that there is
no agreement in the literature: sometimes, to avoid the negative Poisson bracket
in the correspondence above, things are defined with signs that disagree with our
choice here. For instance, Arnold [6] reverses the signs of our [f,¢] and [Ly, Lg).
In [92) commutators and Poisson brackets are defined as in the present paper
but the sign of Ly is reversed.

Hamiltonian systems appear very frequently in the applications; virtually all
phenomena where dissipation is absent or can be ignored may be modelled by
a Hamitonian system. In particular, Hamiltonian systems play a key role in
classical, statistical and quantum mechanics, in optics and in plasma physics.

Geomelric Inlegration 13

The property of y = f(¥) being Namiltonian, which refers to the veclor
field of the system differential equations, can be translated into a corresponding
property of the flow ¢¢s. In fact a system in R is llamiltonian if and only if its
flow is, for each t, a symplectic transformation. By definition, a transformation
¥ in R is symplectic if its Jacobian matrix V'(y) satisfies {92]

VT (y)J¥'(y) = J,

where J is the matrix Equation 5.2. An equivalent definition in terms of differ-
ential forms exists [6]. Differential forms Jead to manipulations that are easier
than those required when using Jacobians. More importantly, differential forms
provide a geometric interpretation of symplecticness in terms of conservation of
areas.

Hamiltonian systems possess many features not shared by other systems of
differential equations, Many properties that “general” syslems possess only un-
der exceplional circumstances appear generically in Hamiltonian systems. All
these features and properties can be traced back to the symplecticness of Hamil-
tonian flows.

5.2 What is a symplectic integrator?

The failure of virtually all well-known methods in mimicking amiltonian dy-
namics suggested the consideration of schemes such that the mapping ¥, is
symplectic whenever the field f is Hamiltonian. Such methods are called sym-
plectic or canonical. Early references on symplectic integration are Ruth (83],
Channel [22], Menyuk (70}, Feng [31-33], even though the idea of symplectic
integration apparently goes back to DeVogelaere in 1956 (cf. [23)).

Since a flow is symplectic if and only if the corresponding vector field is
Hamiltonian, it is not difficult to see that a method is symplectic if and only if
the corresponding formal modified vector field Equation 3.1 is Hamiltonian, or
equivalently all the fy are Hamiltonian. Thercfore, ignoring the O(hN*1Y re-
mainder term, a symplectic discretization of a Hamiltonian problem changes the
Hamiltonian system being solved into a nearby Hamiltonian problem. The dis-
cretization provided by a nonsymplectic method changes the Hamiltonian system
into a nearby non-Hamiltonian perturbation. Thus for a symplectic method, the
Hamiltonian vector field Equation 3.1, has an associated Hamiltonian function
that we denote by

Ho®y) + hH' (y) + R HA(y) + -+ (5.3)

As discussed above the propertics of a method are encapsulated in the vector
series Equation 3.1, In the Hamiltonian context we can rather use the simpler,
scalar series Equation 5.3. More details will be given later.

For extensions of the idea of symplectic integration, including constrained
systems, partial differential equations and nonstandard symplectic structures,
see [37,38,58,59,67,89,92}.
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5.3 Families of symplectic integrators

There have been three main approaches to the construction of symplectic inte-
grators.

53.1 Symplectic methods based on generating functions

Symplectic transformations can also be characterized in terms of so-called gen-
erating functions [6,92) and the early papers on symplectic integration resorted
to this characterization. Most of the resulting methods were too involved for
practical use. Those generating function methods that are practical are best
analyzed as members of the classes of symplectic composition methods or sym-
plectic Runge-Kutta methods. For instance, Ruth first derived his methods (83]
through the generating function formalism, but later reinterpreted them as com-
position methods [36]. For these reasons this methodology will not be discussed
{urther here and the interested reader is referred to {92].

5.3.2 Symplectic methods using compositions

Assume that the individual mappings being composed in Equation 4.1-4.3 are
symplectic. ~ This will automatically be the case for splitting mcthods
Equation 4.3 if the parts fU1 are Hamiltonian. (Note that splitting f into Hamil-
tonian parts fI1 4 112} corresponds Lo splitting the Hamiltonian funclion H in
arbitrary pieces H = HM 4 123} Under this assumption of symiplecticness of Lhe
parts being composed, the resulting overall method ¥ s will also be symplectic.

The methodology presented in Scction 4 to analyze Y,y is parlicularly suit-
able in the symplectic case, because rather than working with vector fields and
their Lie-Poisson brackets one works with Hamiltonian functions and their Pois-
son brackets, see [35,92,94).

Perhaps separable Hamiltonians

H=T()+ V() (5.4)

have provided the most common application of the composition approach. These
Harniltonians appear often in practice with T and V respectively giving the
kinetic and potential energies. After the splitling H = A4 R g = T(p),
H' = V(g), the individual pieces are integrable in closed form; the solution flow
of for T(p) is (p%,¢°) — (%, ¢° + tVT(p°)) (sometimes referred to as a “drift”)
and the solution flow of for V(q) is (p°,¢%) — (»° - (9V(4°), ¢") (sometimes
referred Lo as a “kick”). Then a step of the method Fquation 4.3 is given by

@.. = 0_.1_ + a.,?ﬂ%&ﬁ&. \u..+_ =P - em\~<<A©_.v_ =1, ...,8, Amg

where (Py, Qo) (respectively (Q,, P,41)) is the nmncrical solution al the begin-
ning (respectively the end) of the step.

It is also possible [63) to modify the kicks by modifying the force = VV with a
term involving the Hessian matrix of V. A pioneering paper is due to Rowlands
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[82]. Rowlands method is very cfficient and achieves fourth order by a change
of variables. The idea of changing variables to increase Lhe order goes back to
Butcher, see the discussion in {61-63].

Splittings of the Hamiltonian also arisc when using multiple time-steps (9],
so that different forces are sampled at different rates.

5.3.3 Symplectic Runge-Kutta methods

The standard class of implicit RK methods happens to contain symplectic in-
tegrators. This was shown independently by Lasagni (57}, Sanz-Serna [86] and
Suris [99]. For a method with coeflicients (a;;) and weights () the condition

Vi,j, biaij + bjaj; — v_.F. =0, (5.6)

guarantees symplecticness. The Gauss methods (order 2s with s stages) arc sym-
plectic. There are also diagonally implicit, symplectic methods; with s stages
they include s frece paramclers. These diagonally implicit methods are composi-
tions of the midpoint rule (the lowest order Gauss method) and can be analyzed
via the BCH formula. Other references on the construction of methods satis{ying
Equation 5.6 are [48,49,85].

The condition Equation 5.6 is also essentially necessary for symplecticness
(92). The first proof of the necessity of Equation 5.6 was given by Lasagni in an
unpublished manuscript and is very delicale; a similar proof was published in
(1)

A more modern approach to the sympleclicness condition Equalion 5.6 is
via D-series [19). First, a nccessary and sullicicnt condition is derived on the
coefficients ¢(r) of a B-series Equation 2.4 for Lhis serics to define a symplectic
transformation whenever the underlying vector field is Hamiltonian. In a second
stage, the B-series coefficients are expressed in terms of the tableau elements (a;;)
and (b;) and the symplecticness condition for the ¢(r)’s is shown to be equivalent
to Equation 5.6. The proof of the necessity of Equation 5.6 via B-series is easier
and more powerful than the original Lasagni proof. Furthermore the B-series
technique is also more general, because it allows to deal with methods, other than
RK methods, expressible as B-series. Hairer, Murua and Sanz-Serna, building
on the B-series characterization of symplecticness, showed that there are not any
nontrivial examples of symplectic multiderivative RK methods [45].

Another important contribution based on B-series is due to Hairer [43]. Tor
Ilamiltonian f, Hairer investigates the modificd vector ficld Equation 3.2 and
wriles a necessary and sufficient condition on the cocllicients b(r) for this se-
rics Lo be symplectic, i.c. for the underlying method to be symplectic. He then
shows that, when the b(r)’s are wrillen as functions of the method coelficients
¢(r) Equation 2.4, his symplecticness condition on the b()’s becomes the Calvo
and Sanz-Serna [19] symplecticness condition on the ¢(r)’s. Furthermore when
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Equation 3.2 is symplectic, Hairer gives an explicit formula for the modified
Hamiltonian Equation 5.3. This is of the form

8
~
ot ———d(W) T (W){¥), u.d
S T G A
where the meaning all the various symbols will be discussed presently. The inner
summation extends to all trees with n-vertices, while in conventional B-series
Equation 2.4, Equation 3.9 one deals with rooted trees. A rooted tree is a tree
in which a vertex has been highlighted to play the role of the root; conversely
a tree can be seen as an equivalence class of rooted Lree obtained by grouping
all rooted trees that only differ in the location of the root. Thus Equation 5.7
has fewer terms than Equation 3.9. The star in T} means that not all trees are
present in the summation: so-called superfluous trees [91] are not to be included.
For each tree w, o(w) represents the number of symmetries and H(w){(y) is the
corresponding elementary Hamiltonian, a real-valued function of y obtained by
combining H and its partial derivatives. Elementary Hamiltonians were first
introduced in {91} with the name canonical elementary differentials. Finally
d(w) is a real coefficient that can be computed in terms of the coeflicients b(r) in
Equation 3.2. Murua [72] calls expressions like Equation 5.7 H-series and shows
how to manipulate them.

It was first proved in [91] (sce also (84]) that, for an RK method, the sym-
plecticness condition Equation 5.6 acts as a simplifying assumption, .. when
Equation 5.6 holds not all the order conditions Equation 2.5 are independent.
Indeed when Equation 5.6 holds, to achicve order r it is enough to impose
e(r) = 1/v(7) for one rooted tree T in each nonsuperfluous tree of order < r.
This is a consequence of two lacts:

1. order r can be imposed by demanding that Equation 5.7 agrees with the
true Hamiltonian H except for a remainder of order O(h") and

2. in Equation 5.7 there is a term for each nonsuperfluous tree.

(In [91] generating functions were used instead of the modified Hamiltonians,
but the argument is essentially the same.)

We finally discuss other classes of Runge-Kutta-like methods that contain
symplectic integrators.

« Partitioned Runge-Kutta (PRK) methods for separable Hamiltonian sys-
tems Equation 5.4. These are Runge-Kutta methods with two tableaux;
one is used for the p variables and the other for the g variables. A symplec-
ticness condition analogous to Equation 5.6 was first presented by Sanz-
Serna at the 1989 London ODE meeting (88], and discovered independently
by Suris [101). The order conditions were studied in [1]. This class of meth-
ods is useful because it contains ezplicit schemes that are symplectic. These
turn out to be [77] of the form Equation 5.5 and may therefore be studied
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through the BCH formula, sce [14]. Specific methods are constructed in
[1,20,77.88).

o Runge-Kutta-Nystrom (RKN) methods for [familtonian problems of the
form p = —0V/dq, 0q = M='p, where V = V(q) is the potential and
M the mass matrix. The corresponding symplecticness condilions were
first derived by Suris [99,100]. For the order conditions sce [16]. Specific
methods are constructed in [17,18,77,78]. Sce also (76}

o Partitioned Runge-Kutta methods for general (not necessarily separable)
Hamiltonians. This family is niethodologically useful because iL inclades
the families of RK methods, PRK methods for separable Hamiltonians and
RKN methods. It is the class considered in important recent theoretical
papers such as [43]. Interesting references are (51,73].

« Additive Runge-Kutta methods [5). This class applies to splittings of the
Hamiltonian functions and contains all the others as particular cases.

5.4 Properties of symplectic integrators

Hamiltonian flows exaclly preserve the 3.,_:_«_2._.:. structure and the value of the
Hamiltonian function (energy). 1L was proved by Ge and Marsden [40]) that it
is in general impossible for a symplectic integrator Lo exactlly preserve energy.
However in practice symplectic integrators do a very good job of preserving the
value of the energy. This conservation is linked to the existence of a modified
Hamiltonian function, as first noted by Lasagni in a sct of unpublished notes
mentioned in [57). See also (7,44,65} and the discussion in [92].

Somectimes symplectic integrators have more favourable error-growth prop-
erties than their general counterparts. Sce [13,18,21,39). It is interesting that
those favourable properties are not shared [80] by schemes obtained hy fitting
the classical stability region of the method; this shows that we are dealing with
methods that cannot be analyzed or obtained within the classical paradigm.

Unfortunately the advantages of symplecticness cannol be combined with
variable stepsizes [17]. This is duc to fact that with variable stepsizes the back-
ward error interpretation breaks down, see (17,92}

6 Reversible integration

In this section the presentation emphasizes the analogies with symplectic inte-
gration.

6.1 Reversible systems

Let p be a linear involution, i.e., a linear mapping in RP such that p* = Id.
An example often found in mechanics has y = (p.q) and p(p,¢) = {(-p.9).
where p is the collective vector of velocities of the system being studied and
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g the corresponding collective vector of positions or coordinales. A system of
differential equations y = f(y) is p-reversible il

J(py) = —p/(v):
This property, that operates at the vector field tevel, is equivalent Lo the require-
ment that the corresponding flow ¢. s be, for each t, a p-reversible mapping. By
definition, a mapping ¥ in RD is p-reversible if
un_oéonnel‘ 6.1)

Thus a mapping ¥ is p-reversible il it is transformed in its inverse y-! by the
change of variables y — py. In the particular case of a flow, the reversibility
condition becomes

plogiyop= s.l.v =¢_u
for a reversible system changing variables y — py jusl reverses the sense of the
arrow of time.

6.2 What is a reversible integrator

Methods for which ¥ s is a p-reversible mapping for each h and cach p-reversible
veetor field are called p-reversible. D. Stoffer has heen one of the leading con-
tributors to the area of reversible integration, starting with his thesis [96).

6.3 Families of reversible integrators
6.9.1 Reversible composition methods

By using Equation 6.1 it is easy to derive sufficient conditions for a composition
method to be reversible. For instance a symimetric composition of reversible
mapp ¥MWA@) is reversible.

6.3.2 Reversible Runge-Kutta methods

For RK, PRK, RKN and other standard famnilics of nunicrical methods,
p-reversibility turns out to be equivalent to time-reversibility, i.e. to the require-
ment

Yong = (Wag)7" (6.2)
This is because such methods are equivariant with respect to linear changes of
variables

plovngop=n,y

(changing variables by p in the computed solution is the same as applying the
method to the differential equation resulting from changing variables).

Note that Equation 6.2 is independent of p. Time-reversible (also called
selfadjoint [92]) methods were of course well known before the introduction of
the notion reversible integration. Therefore there has been no neced to study the
¢lasses of p-reversible RK, PRK and RKN method, as distinct from the situation
for symplectic RK, PRK and RKN methods.
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6.4 Propertics of reversible integrators

Reversible integrators share many of the lavourable properties of symplectic
methods [13,21], with the advantage that they retain Lhose properlies even when
applied with variable stepsizes, provided that the stepsize selection is carried out
s0 as Lo preserve reversibility (47.97).

7 Volume preserving flows

A divergence-free V- [ = 0 vector ficld gives rise to a volunie-preserving flow
by, i.c., to a flow whosc Jacobian determinant is = 1, leading to the property
that, for any domain @ in phase-space, 0 and $1.7(Q) possess the same volume.
Volume-preserving integration has received some attention Ba.mm_.\u.om_. but not
nearly as much as symplectic or reversible integration.

8 Epilogue

We shall finish as we started: quoting Lambert. In his (1973) textbook (53], he
writes: “Remarkably little is required by way of prerequisites for the study of
computational methods for ordinary differential equations.” In fact in the black-
box subroutine mode of operation, the nunerical analyst was sereened from the
specific structure of the problem being solved, from its mathematical singularities
and from the application ficlds. Things have now changed and it is our feeling
that they will change even more in the future. Contributors to numerical ordi-
nary differential equations will need to be familiar with relevant developments
in the theory of &22331 equations. Furthermore, many important develop-
ments are likely to arise when considering specific problems from the difTerent
application fields and therefore some degree of interdisciplinary work will be
essential.
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