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Abstract. We analyze in detail the growth with time (of the coefficients of the asymptotic
expansion) of the error in the numerical integration with one-step methods of periodic solutions of
systems of ordinary differential equations. Variable stepsizes are allowed. We successively consider
“general,” Hamiltonian, and reversible problems. For Hamiltonian and reversible systems and under
fairly general hypotheses on the orbit being integrated, numerical methods with relevant geometric
properties (symplecticness, energy-conservation, reversibility) are proved to have better error growth
than “general” methods.
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1. Introduction. The purpose of this paper is the analysis of the error growth
in the numerical integration by one-step methods of periodic orbits of systems of
differential equations. Periodic solutions and solutions that are small perturbations
of periodic orbits appear very frequently in the applications. Also, as Butcher [5]
points out, “problems with periodic solutions are convenient as test problems for
differential equation software because of the ease with which the accuracy of the
computed solutions can be assessed.” Often, when periodic orbits are used as test
problems, the integration is carried out for many periods of the solution. These
considerations prove the interest in investigating how integrators perform on periodic
orbits and in particular in the long-time integration of periodic orbits.

The second author’s interest in periodic orbits started in the paper [7] with Calvo.
An optimized, explicit, symplectic, fourth-order Runge–Kutta–Nyström formula was
developed there and compared with an optimized, explicit, nonsymplectic, 3/4 embed-
ded Runge–Kutta–Nyström pair of Dormand, El-Mikkawy, and Prince [9, Table 3].
Kepler’s problem was used for numerical tests and the numerical results showed that
errors grow quadratically with time for the nonsymplectic, variable stepsize algorithm
and only linearly for the symplectic algorithm with constant stepsizes. Section 4 of [7]
was devoted to the mathematical analysis of these behaviors. Due to the context in
which it arose, the analysis in [7] was essentially focused on Kepler’s problem, in spite
of the fact that the underlying ideas have a much wider applicability. The present
paper avoids such a limitation in scope and considers general periodic orbits. Fur-
thermore, the techniques of proof in [7] require a number of unnatural hypotheses; for
instance, a period of the orbit was supposed to contain a whole number of timesteps.
These artificial hypotheses have been completely removed here. The present paper
subsumes the contents of Section 4 in [7].
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†Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de

Valladolid, Valladolid, Spain (bego@cpd.uva.es, sanzserna@cpd.uva.es).

1391

D
ow

nl
oa

de
d 

01
/0

3/
14

 to
 1

57
.8

8.
33

.3
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1392 B. CANO AND J. M. SANZ-SERNA

The article [7] stimulated further work [6], [13] on error growth in the integration
of periodic orbits. We explore the relations between [6], [13], and the present research
in section 8. The papers [14], [15] present cases of linear versus quadratic growth in
partial differential equation problems.

Section 2 contains some preliminary material. We begin (section 2.1) with the
introduction of the initial value problem to be solved, which, for simplicity in the
presentation, is supposed to be smooth in the whole of the phase space. The inclusion
here of the extension to cases where the system is only Ck in a domain would have
resulted in a longer paper but not in any new mathematical idea. Section 2.1 also
describes the methods being used, which include virtually all one-step methods, and
the (variable) stepsize strategies that are allowed. The paper relies throughout on the
existence of an asymptotic expansion for the global error. This is presented in section
2 as well. We also provide some background on periodic orbits, including the notions
of monodromy matrix and Floquet multipliers.

Section 3 studies, for general periodic problems, the growth of the coefficients
em of the expansion of the error. It turns out that, if r denotes the order of the
integrator, then, for r ≤ m ≤ 2r − 1, the value of the em when the integration has
been going on for N periods is completely determined by (i) the value e(1)m of em after
one period and (ii) the monodromy matrix of the orbit being integrated. The latter
measures the change in the periodic orbit when its initial value suffers an infinitesimal
perturbation. If there is a Floquet multiplier > 1 then the em grow exponentially as
expected. For a hyperbolic attracting orbit the components of em transversal to the
orbit remain bounded, but there is a linearly increasing phase error.

Section 4 looks at the important particular case where the system being studied is
Hamiltonian. In section 4.1 we show how, for Hamiltonian systems, the monodromy
matrix has some specific properties. These properties imply that situations that are
“generic,” i.e., the rule, for “general” systems cannot arise at all in the Hamiltonian
case. Conversely, there are situations that are generic for Hamiltonian systems and
exceptional for general systems. As a consequence, the error-growth behavior for the
Hamiltonian case is special and deserves a separate study. We have devoted section 4.2
to this point. Often Hamiltonian systems are integrated by numerical methods with
conservation properties, such as energy conservation or symplecticness. In section 4.3
we prove that for these methods the values e(1)m which, along with the monodromy
matrix determine the error growth, satisfy some constraints. It then follows that there
are many periodic Hamiltonian problems where general integrators possess quadratic
error growth, while energy-conserving methods and symplectic methods only lead to
linear error growth. We emphasize that in the symplectic case constant stepsizes are
necessary for the linear error growth.

Section 5 considers the case of reversible systems. Our treatment is parallel to
that given in section 4 to the Hamiltonian case. We show how reversibility constrains
the monodromy matrix and the consequences for error growth. For reversible meth-
ods the e(1)m are also constrained, and it is possible to have linear error growth in
important cases where general integrators lead to quadratic growth. Unlike the sym-
plectic cases the stepsizes may be variable provided that they are reversible. This has
attracted some recent attention on reversible integrators following the work by Hut,
Makino, and McMillan [18]. Also in this section we point out an interesting property
of nonreversible integrators of even order of accuracy.

Section 6 uses Kepler’s problem to illustrate the material in sections 4 and 5. In
numerical experiments symplectic formulas with variable stepsizes lead to quadratic
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ERROR GROWTH IN PERIODIC ORBITS 1393

error growth, while reversible, variable stepsize algorithms lead to linear error growth.
We show that for large eccentricities a reversible, variable stepsize fourth-order method
outperforms a standard fourth-order code.

Section 7 is technical. We present there the existence of the asymptotic expansion
used throughout the paper.

Section 8 contains some concluding remarks.
Traditionally, the analysis of timestepping methods is based on the ideas of con-

sistency and stability. Consistency means small local errors and stability means that
local errors do not have a catastrophic effect on global errors. Stability is usually
measured by a number (stability constant) that measures the relation between the
size of the global error and the size of the local error. In actual fact, local and global
errors are vectors in phase space and their direction matters: in the integration, a
local error of a given size in one direction may be amplified by a large factor while an-
other local error of the same size may be amplified by a smaller factor. As discussed
in [14], [15], the geometric properties of the system being integrated (reversibility,
Hamiltonian character) determine which directions in phase space are relatively more
harmful. Numerical methods with good geometric properties have local errors that
avoid those harmful directions. In this paper we witness similar phenomena: not all
directions in phase space are treated in the same way by the monodromy matrix and
geometric integrators have their errors in the “good” directions. We finally point out
that one or another geometric property appears to be essential here: it is not enough
for the integrators to have amplification factors of unit modulus along the imaginary
axis [21].

2. Preliminaries.

2.1. The numerical method. We consider an initial value problem

ẋ = f(x),(1)
x(t0) = x0 ∈ RD,(2)

where for simplicity we assume that f is smooth (C∞) in the whole of RD. All the
results in this paper can be easily adapted to the case where f is only of class Ck in
a domain Ω ⊂ RD. The symbol ϕt refers to the t-flow of the system (1), [22, Section
2.1]. For each fixed t, ϕt is a mapping ϕt : RD → RD and, by definition, ϕt(α) is the
value at time t of the solution of (1) with initial value α at time zero. For simplicity
in the presentation, it is assumed that, for each real t, ϕt is defined in the whole
of RD.

We are concerned with a one-step integration formula for (1). This is given ([8,
Chapter 4], [22, Chapter 3]) by a mapping ψh : RD → RD that advances the solution
h units of time. For instance, ψh(x) = x + hf(x) corresponds to Euler’s rule. For
implicit formulas ψh(x) is defined implicitly. The mapping ψh is assumed to possess
the following properties.

(i) A value h0 > 0 exists such that for |h| ≤ h0 the domain of ψh is the whole of
RD. Practical explicit methods satisfy this assumption. Implicit methods satisfy this
assumption if f has bounded derivatives [4, Corollary 341B]; see [22, Section 3.3.3]
for a discussion. Note also that negative values of h are allowed in ψh; they move the
solution backwards in time.

(ii) ψh(x) depends smoothly on h and x; for Runge–Kutta and other methods
used in practice this smoothness is an automatic consequence of the smoothness
of (1).

D
ow

nl
oa

de
d 

01
/0

3/
14

 to
 1

57
.8

8.
33

.3
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1394 B. CANO AND J. M. SANZ-SERNA

(iii) The mapping ψh is consistent of order, say, r ≥ 1, r an integer. This means
that for each x ∈ RD the local error at x defined by ϕh(x) − ψh(x) is O(hr+1) as
h → 0.

(iv) The consistency of order r of ψh also holds in the C1 topology, i.e., at each
x ∈ RD the D ×D Jacobian matrices ψ′

h(x) and ϕ′
h(x) satisfy

ϕ′
h(x) − ψ′

h(x) = O(hr+1), h → 0.(3)

For Runge–Kutta and other practical methods (iv) is a consequence of (iii); see, e.g.,
[11], [12].

Note that from assumptions (ii) and (iii) the local error possesses an asymptotic
expansion

ϕh(x) − ψh(x) = hr+1λr+1(x) + hr+2λr+2(x) + · · · ,(4)

where the λ′s are smooth functions of x.
Of course the numerical solution is found by iteration of the mapping ψh,

xn+1 = ψhn
(x), tn+1 = tn + hn, n = 0, 1, 2, . . . ,(5)

where h0, h1, h2, . . . is a given sequence of positive stepsizes. Then xn is an approxi-
mation to x(tn), where x(t) = ϕt−t0(x0) denotes the solution of (1), (2).

Throughout the paper, we examine the case where the stepsizes are determined
by

hn = εs(xn, ε), ε > 0, n = 0, 1, 2, . . . .(6)

Here we assume that
(v) s(x, ε) is a smooth real-valued function defined in RD × [−1, 1] such that, for

suitable positive constants smin and smax and all x ∈ RD and ε, |ε| ≤ 1,

smin ≤ s(x, ε) ≤ smax.(7)

Stoffer and Nipp [28] have proved that (6) “almost” holds for all the standard
stepsize selection strategies including the use of embedded pairs or Richardson’s ex-
trapolation. The reader is strongly advised to read the original paper for a precise
understanding of the applicability of the Stoffer and Nipp result to actual codes. The
nonstandard stepsize strategy suggested by Hut, Makino, and McMillan [18] and im-
plemented in this paper is actually of the form (6); see section 5.3. Of course, s ≡ 1
provides constant stepsizes.

Note that, when (5), (6) are applied to the integration of (1), (2), the user only
supplies the value of the parameter ε and the integrator returns sequences xn = xn(ε),
tn = tn(ε).

2.2. The variational equation. It is well known that if the initial condition
x0 in (2) is perturbed and becomes x0 + δ0, δ0 small, then the perturbed solution of
the initial-value problem is approximately given by x(t) + δ(t), where δ(t0) = δ0 and
δ satisfies the variational equation

δ̇ = J(t)δ, J(t) = f ′(x(t))(8)

(f ′ is the Jacobian matrix of f). The system (8) is linear with variable coefficients,
and therefore its solution with initial value δ0 at time t0 is given by δ(t) = M(t, t0)δ0,
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ERROR GROWTH IN PERIODIC ORBITS 1395

where M(t, t0) is the associated transition matrix. Recall that the matrix-valued
function of two real arguments M(·, ·) is characterized by

∂M(t, s)
∂t

= J(t)M(t, s), M(s, s) = I

and satisfies

M(t3, t1) = M(t3, t2)M(t2, t1)(9)

for all t1, t2, t3.
In terms more precise than those used above, the difference ϕt−t0(x0 + δ0) −

ϕt−t0(x0) between the perturbed and unperturbed solutions is given by M(t, t0)δ0 +
o(‖δ0‖) as δ0 → 0. This shows that M(t, t0) is the value at x0 of the Jacobian matrix
of the flow ϕt−t0 ; i.e.,

ϕ′
t−t0(x0) = M(t, t0).(10)

Similarly, we have that, for all t and s,

ϕ′
t−s(x(s)) = M(t, s).(11)

2.3. Asymptotic expansion of the global error. Under the assumptions
(i)–(v) in section 2.1, the global errors xn − x(tn) of (5), (6) possess an asymptotic
expansion in powers of ε,

xn − x(tn) = εrer(tn) + εr+1er+1(tn) + · · · + ε2r−1e2r−1(tn)
+ ε2r−1R2r−1(tn, ε), ε → 0.(12)

Here the error functions em are smooth functions of t (independent of ε), and R2r−1
is a smooth function such that, for ε → 0, R2r−1(t, ε) tends to zero uniformly in
bounded time intervals. The existence of (12) is proved in section 7.

The error functions em satisfy nonhomogeneous versions of the variational equa-
tion (8)

ėm = J(t)em + σm(t), em(t0) = 0,(13)

where the σm are suitable source terms (see section 7). Via the variation of constants
formula the em

′s can be expressed in terms of the transition matrices M and the
corresponding source

em(t) =
∫ t

t0

M(t, s)σm(s)ds.(14)

Remark. In (12) we have expanded only to order ε2r−1, but it is possible to
expand to any power of ε. We stop at ε2r−1 because this is what we need later.

2.4. Floquet multipliers. Let us now assume that the solution x(t) of the
initial value problem (1), (2) is T periodic, x(t+ T ) ≡ x(t), T > 0. Then the matrix
J(t) in the variational equation is also T periodic, and it follows trivially that

M(t+ T, s+ T ) ≡ M(t, s).(15)
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1396 B. CANO AND J. M. SANZ-SERNA

To avoid trivialities, we always assume that x(t) is a genuine periodic solution and
not an equilibrium; i.e., x(t) is not constant. This is equivalent to the assumption
that, for all t, f(x(t)) 6= 0.

From (15) and (9) we can write, for any real t and integer N ,

M(t+NT, t) = M(t+NT, t+ (N − 1)T )
× M(t+ (N − 1)T, t+ (N − 2)T )
× . . .

M(t+ T, t)
= M(t+ T, t)N .(16)

This is the group property of the transition matrices over multiples of the period T :
advancing N periods in one go coincides with advancing N times over one period.

The matrix

Mt = M(t+ T, t)

that effects the transition over one period starting at time t is called a monodromy
matrix of the periodic solution x. Different t lead to different matrices Mt, but from
(9) and (15)

Mt2M(t2, t1) = M(t2 + T, t1) = M(t2 + T, t1 + T )M(t1 + T, t1) = M(t2, t1)Mt1 ,

so that Mt2 and Mt1 are related by a similarity transformation and share the same
eigenvalues and Jordan structure. The eigenvalues of the monodromy matrices are
called the Floquet multipliers of the periodic solution [16, Section 1.5]. Unity is always
a Floquet multiplier because, by differentiation in (11),

M(t+ T, t)f(x(t)) = f(x(t)),(17)

so that f(x(t)) is an eigenvector of Mt with eigenvalue 1.

3. Error growth in the integration of periodic orbits: The general case.
Our aim in this section is to study the behavior as t → ∞ of the error functions em(t),
r ≤ m ≤ 2r − 1, of the numerical integrator (5), (6) when the solution x(t) of (1),
(2) is T periodic. A crucial observation (see section 7) is that the sources σm(t),
r ≤ m ≤ 2r − 1 in (13) are also T periodic.

We begin with an auxiliary result.
LEMMA 3.1. If t ∈ [t0+(N−1)T, t0+NT ], N an integer, then, for r ≤ m ≤ 2r−1,

em(t) = M(t− (N − 1)T, t0) em(t0 + (N − 1)T )

+
∫ t−(N−1)T

t0

M(t− (N − 1)T, s)σm(s)ds.(18)

Proof. By (14) and (9)

em(t) =
∫ t

t0

M(t, s)σm(s)ds

=
∫ t0+(N−1)T

t0

M(t, t0 + (N − 1)T )M(t0 + (N − 1)T, s)σm(s)ds

+
∫ t

t0+(N−1)T
M(t, s)σm(s)ds.
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ERROR GROWTH IN PERIODIC ORBITS 1397

Now (18) follows after using (9) in the first integrand and changing variables s =
(N − 1)T + s′ in the second integral.

We observe that in (18) the matrix M(t − (N − 1)T, t0) and the integral are
bounded uniformly in t, because t− (N − 1)T and t0 differ at most by T . Therefore
the growth of em(t) as t ↑ ∞ is governed by the growth of em(t0 + (N − 1)T ) as
N ↑ ∞, i.e., it is enough to look at the values of the error functions only when the
computation has been going on for a whole number of periods. Thus, in what follows,
we look at the vectors defined by

e(N)
m = em(t0 +NT ), N = 1, 2, . . . .

A second consequence of the lemma is the following result, which is essentially in
[7, Section 4.2].

THEOREM 3.1. In the situation above, for r ≤ m ≤ 2r − 1,

e(N)
m = Mt0e

(N−1)
m + e(1)m , N = 2, 3, . . .(19)

and

e(N)
m =

( N−1∑
i=0

M i
t0

)
e(1)m , N = 1, 2, 3, . . . .(20)

Proof. Formula (20) follows from (19) by induction in N . To obtain (19) set
t = t0 +NT in (18).

Formula (20) is the main formula in this paper. It says that the error term e
(N)
m

after N periods is determined by (i) the error term e
(1)
m after one period and (ii) the

monodromy matrix Mt0 . Note that the latter depends only on the problem being
solved and not on the particular numerical procedure (5), (6).

The growth with N of (20) can be investigated by a procedure very similar to that
used to analyze the familiar power method for the computation of eigenvalues. The
vector e(1)m is decomposed according to the eigenvectors and generalized eigenvectors
of Mt0 . This decomposition reduces the study of (20) to the study of expressions∑
M ie, where e is a known vector and M is a Jordan block of Mt0 . In turn, the

growth of (
∑
M)i is governed by the following lemma.

LEMMA 3.2. Assume that M is a µ × µ Jordan block with eigenvector λ. Then,
as N ↑ ∞,

(i) if |λ| ≥ 1, λ 6= 1, then

‖
N−1∑
i=0

M i‖ = O(Nµ−1|λ|N );

(ii) if |λ| < 1, then

‖
N−1∑
i=0

M i‖ = O(1);

(iii) if λ = 1, µ > 1, then

‖
N−1∑
i=0

M i‖ = O(Nµ);
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1398 B. CANO AND J. M. SANZ-SERNA

(iv) if λ = 1, µ = 1, then

N−1∑
i=0

M i = N.

Proof. In the first two cases,

N−1∑
i=0

M i = (M − I)−1(MN − I),

and the lemma is a consequence of the well-known behavior of MN as N ↑ ∞. In the
third case, the entries of MN−1 are polynomials of degree µ−1 in N , and summation
brings in an extra power of N . The final case is trivial.

We are now ready to discuss the growth of the e(N)
m . The following result is a

direct consequence of Lemma 3.2 in tandem with (20).
THEOREM 3.2. Assume that the numerical method (5), (6) satisfying the assump-

tions (i), (v) in section 2.1 is applied to the integration of the initial value problem
(1), (2) with T -periodic solution. Then the following mutually exclusive possibilities
arise:

(G1) The solution x(·) has a Floquet multiplier of modulus > 1, or in other words
the monodromy matrix Mt0 has spectral radius R > 1. Then, for r ≤ m ≤ 2r − 1,
N → ∞, e(N)

m = O(Nµ−1RN ), where µ is the size of the largest Jordan block of Mt0

corresponding to the eigenvalues of modulus R.
(G2) All Floquet multipliers have modulus ≤ 1. Denote by µ the size of the largest

Jordan block of Mt0 corresponding to eigenvalues 6= 1 of modulus 1, and denote by µ1
the size of the largest Jordan block of Mt0 with eigenvalue 1 (µ1 ≥ 1 by (17)). Then,
for r ≤ m ≤ 2r − 1, ||e(N)

m || = O(Nν), with ν = max(µ− 1, µ1), so that the growth is
polynomial.

A frequently occurring particular case of (G2) deserves special attention and is
considered next.

(G2′) The periodic solution is hyperbolic and attracting; i.e. 1 is a simple Floquet
multiplier, and the remainingD−1 multipliers have modulus< 1. This corresponds to
case (G2) above with µ = 0, µ1 = 1, and leads to linear error growth ||e(N)

m || = O(N).
If we decompose e(N)

m according to eigenvectors and generalized eigenvectors of Mt0 ,
then the components of e(N)

m corresponding to multipliers 6= 1 remain bounded by (ii)
in Lemma 3.2. In the direction of the eigenvector f(x0) associated with the multiplier
1 (see (17)), multiplication by

∑N−1
i=0 M i

t0 amounts to multiplication by N ; see (iv)
in Lemma 3.2. Hence the component along f(x0) is in e

(N)
m exactly N times larger

than in e
(1)
m . The conclusion is that the error term e

(N)
m consists of (i) a bounded

component transversal to the orbit and (ii) a component in the direction tangent to
the orbit that is linear in N . This second component is a phase error.

The situation (G2′) is structurally stable: if a differential system has a periodic
orbit in (G2′) then all neighboring differential systems have a periodic orbit in (G2′).
Note also that for (G2′) it is known [3], [10], [28] that the numerical integrator pos-
sesses an attractive, closed, invariant curve close to the orbit being integrated. It is
clear that as the numerical solution describes again and again this invariant curve the
numerical error transverse to the orbit remains bounded. There is a linearly growing
phase error because the numerical and true period do not coincide.
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ERROR GROWTH IN PERIODIC ORBITS 1399

4. Error growth in the integration of periodic orbits: The Hamiltonian
case.

4.1. Hamiltonian systems. We now look at the case where the system (1)
being integrated is Hamiltonian. This means [1], [22] that the dimension D is even,
D = 2d, and the vector field f(x) is of the form

f(x) = Ξ−1∇H(x),(21)

where Ξ is the 2d× 2d skew-symmetric matrix

Ξ =
[

0 I
−I 0

]
,

and ∇H(x) is the gradient of a scalar function H (the Hamiltonian). It is standard
to write

x = [p1, . . . , pd; q1, . . . , qd]T ,

and then (1), (21) reads

ṗi = −∂H

∂qi
, q̇i =

∂H

∂pi
, i = 1, . . . , d.(22)

Among the properties of Hamiltonian systems we need the following two:
(i) For each t, the flow φt is a symplectic transformation, i.e., a transformation

whose Jacobian matrix is, at each x ∈ R2d, a symplectic matrix. Recall that a 2d×2d
matrix M is said to be symplectic if MT ΞM = Ξ.

(ii) The Hamiltonian is a constant of motion; i.e., if [p1(t), . . . , qd(t)]T is a so-
lution of (22), then H(p1(t), . . . , pd(t), q1(t), . . . , qd(t)) is constant. This is often the
mathematical expression of the principle of conservation of energy.

These properties have implications in connection with the monodromy matrices
Mt of the periodic solution x(·). From symplecticness we have the following.

LEMMA 4.1. The Floquet multipliers 6= ±1 of a periodic orbit of a Hamiltonian
problem appear in quadruples λ, λ, λ−1, λ

−1
(|λ| 6= 1,=λ 6= 0) or real pairs λ = λ,

λ−1 = λ
−1

, or unimodular pairs λ = λ
−1

, λ = λ−1. The multiplicities and Jordan
structure of all four points of a quadruple (or both points of a pair) are the same. The
(algebraic) multiplicity of the multiplier 1 is even ≥ 2.

Proof. From (11) and the symplecticness of ϕt, Mt is a symplectic matrix. The
eigenvalues of symplectic matrices appear in quadruples and pairs as those described
in the lemma in [1, Section 42]. After removing from the 2d eigenvalues those 6=
±1 with their multiplicities, we are left with an even number. Hence the combined
algebraic multiplicities of ±1 are even. The algebraic multiplicity of −1 cannot be odd
because this would lead to a negative determinant in Mt and monodromy matrices
have positive determinant. Therefore the multiplicity of 1 is even.

From conservation of energy we have the following.
LEMMA 4.2. For each δ0 ∈ R2d,

∇H(x0)T δ0 = ∇H(x0)TMt0δ0.(23)

Proof. By conservation of energy

H(x0 + δ0) = H(ϕT (x0 + δ0)).
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1400 B. CANO AND J. M. SANZ-SERNA

Taylor expansion with respect to δ0 leads to

H(x0) + ∇H(x0)T δ0 + · · · = H(ϕT (x0) + ϕ
′
T (x0)δ0 + . . .),

so that periodicity and (10) imply

H(x0) + ∇H(x0)T δ0 + · · · = H(x0 +Mt0δ0 + · · ·)
= H(x0) + ∇HTMt0δ0 + · · ·

and (23) follows.
Note that (23) implies that Mt0 maps the subspace

S⊥ = {v ∈ R2d : ∇H(x0)T v = 0}

into itself. This is the linearized counterpart of the fact that ϕt maps the energy
surface {x : H(x) = H(x0)} into itself. The dimension of S⊥ is 2d− 1: ∇H(x0) 6= 0
because otherwise x0 would be an equilibrium and x(t) would not provide a genuine
periodic orbit. Note also that the vector f(x0) tangent at x0 to the periodic orbit is
in S⊥.

Let us denote by M⊥
t0 the linear operator in S⊥ obtained by restriction of the

linear operator in R2d associated with the matrix Mt0 .
LEMMA 4.3. The Floquet multipliers of a periodic orbit of a Hamiltonian system

are 1 and the 2d− 1 eigenvalues of the operator M⊥
t0 . Unity is an eigenvalue of M⊥

t0
with odd (algebraic) multiplicity.

Proof. The second assertion follows from the first because the (algebraic) multi-
plicity of 1 as an eigenvalue of Mt0 is even and ≥ 2. To prove the first assertion, we
choose an orthonormal basis e1, . . . , e2d of R2d formed by e1 = ||∇H(x0)||−1∇H(x0)
followed by an orthonormal basis of S⊥. From (23) with δ0 = ∇H(x0), we see that
eT
1 (Mte1) = 1, so that the entry (1, 1) of the matrix M̃ that expresses the monodromy

operator in the basis {e1, . . . , e2d} is 1. The entries (1, 2), . . . , (1, 2d) of M̃ are all zero
because Mt0 maps S⊥ into itself. Hence the eigenvalues of the monodromy operator
are 1 and the (2d− 1) eigenvalues of the (2d− 1) × (2d− 1) bottom right submatrix
of M̃ . This submatrix represents M⊥

t0 in the basis {e2, . . . , ed}.
As a consequence of the lemma

R2d = S⊥ ⊕ Span{v},(24)

where v is either an eigenvector or a generalized eigenvector associated with the eigen-
value 1, i.e., either (Mt0 −I)v = 0 or (Mt0 −I)v 6= 0, (Mt0 −I)kv = 0, k > 1. Note that
in general v 6= ∇H(x0), because the latter need not be an eigenvector or generalized
eigenvector; it is a left eigenvector by (23).

4.2. Hamiltonian periodic orbits and general integrators. After Lemma
4.1 it is easy to apply Theorem 3.2 to the Hamiltonian case. There are two possibilities
corresponding to (G1) and (G2).

(H1) There is a Floquet multiplier of modulus 6= 1. Then, for r ≤ m ≤ 2r − 1,
e
(N)
m grows exponentially with N .

(H2) All Floquet multipliers have modulus 1. Then, for r ≤ m ≤ 2r − 1, e(N)
m

grows polynomially.
Now recall that 1 is, in the Hamiltonian case, a multiple eigenvalue of Mt0 . Typi-

cally, it will be a double eigenvalue with a nontrivial 2×2 Jordan block; the situations
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ERROR GROWTH IN PERIODIC ORBITS 1401

where 1 is a quadruple or higher eigenvalue of Mt0 or 1 is a double nondefective eigen-
value disappear under arbitrarily small perturbations. Also, typically, the eigenvalues
6= 1 of Mt0 will be simple and by Theorem 3.2 the growth in case (H2) will be typ-
ically quadratic. Faster polynomial growth rates in (H2) are of course possible. The
(atypical) situation leading to linear growth is the following.

(H2′) All Floquet multipliers have modulus 1 and trivial Jordan blocks, i.e., Mt0

diagonalizes. Then, for r ≤ m ≤ 2r − 1, ||e(N)
m || = O(N). More precisely, the

components of e(N)
m in the direction of the eigenvectors of Mt0 with eigenvalue 1 are

in e
(N)
m N times larger than in e

(1)
m while the remaining components of e(N)

m remain
bounded as N ↑ ∞.

The solutions of the harmonic oscillator are in case (H2′): the monodromy matrix
Mt0 is the identity.

4.3. Hamiltonian periodic orbits and special integrators. Often Hamil-
tonian problems are integrated by one-step methods with conservation properties; see
[22] and the literature therein. For energy-conserving methods, H(ψh(x)) = H(x) for
all h and x, leading to H(x0) = H(x1) = · · · . For sympletic methods ψh is a sym-
pletic transformation. The error propagation mechanism for these methods is more
favorable than that of general methods. This is due to the fact that, for schemes with
conservation properties, the values e(1)m , r ≤ m ≤ 2r − 1, that determine via (20) the
error growth satisfy some constraints.

LEMMA 4.4. Assume that the numerical method (5), (6) satisfying the assumptions
(i)–(v) in section 2.1 is applied to the integration of the Hamiltonian initial value
problem (1), (2) and (21) with T -periodic solution. Assume that the method is either
symplectic with constant stepsizes or energy conserving. Then

∇H(x0)
T
e(1)m = 0, r ≤ m ≤ 2r − 1.(25)

Proof. We look first at the energy-conserving case. Consider the infinitely many
values of ε for which t0 + T is one of the step points, say, tn (clearly the value of n
grows as ε ↓ 0). By conservation of energy, and noting that x(t0 + T ) = x0,

0 = H(xn) −H(x0)

= H(x(t0 + T ) + εre(1)r + · · · + ε2r−1e
(1)
2r−1 +O(ε2r)) −H(x0)

= ∇H(x0)
T [εre(1)r + · · · ε2r−1e

(1)
2r−1] +O(ε2r).

This gives (25) in this case, because the e(1)j are independent of ε.
For symplectic methods with constant stepsizes ε it is possible to find a modified

Hamiltonian H̃ε(x), with H̃ε(x) = H(x)+O(εr), ∇H̃ε(x) = ∇H(x)+O(εr), and such
that the computed points xn differ by O(ε2r) from the values x̃ε(tn) of the solution
xε(t) of the Hamiltonian system with Hamiltonian H̃ε(x), (x̃ε(t0) = x0). If t0 + T is
a step point tn,

0 = H̃ε(x̃(t0 + T )) − H̃ε(x0) = H̃ε(xn) − H̃ε(x0) +O(ε2r)

= H̃ε(x0 + εre(1)r + · · · + ε2r−1e
(1)
2r−1) − H̃ε(x0) +O(ε2r)

= ∇H̃ε(x0)
T
[εre(1)r + · · · + ε2r−1e

(1)
2r−1] +O(ε2r).

= ∇H(x0)
T [εre(1)r + · · · + ε2r−1e

(1)
2r−1] +O(ε2r).

This leads to (25).
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1402 B. CANO AND J. M. SANZ-SERNA

Let us focus on the following situation.
(H2′′) The periodic orbit x(·) of the Hamiltonian system (22) has Floquet multi-

pliers of unit modulus and is such that (see Lemma 4.3) the operatorM⊥
t0 diagonalizes.

Note that while Mt0 has necessarily a multiple eigenvalue and typically does not
diagonalize, this is not the case for M⊥

t0 . Therefore, while (H2′) is rather exceptional,
(H2′′) is commonly occurring. Indeed the following cases are within (H2′′): (1) All
periodic orbits of systems with one degree of freedom. In this case M⊥

t0 is one di-
mensional and certainly diagonalizes. (2) All periodic orbits where 1 is a double
multiplier and the remaining multipliers are simple with unit modulus. Here (Lemma
4.3) M⊥

t0 has distinct eigenvalues. This situation is structurally stable, i.e., persistent
under Hamiltonian perturbations. (3) Some special cases, including Kepler’s problem,
where all solutions in the energy surface {x : H(x) = H(x0)} are periodic with the
same period T . Then M⊥

t0 is the identity.
Clearly, (H2′) is the (exceptional) particular case of (H2′′), where the vector v in

(24) is an eigenvector rather than a generalized eigenvector. For a case in (H2′′) but
not in (H2′), there is a 2×2 Jordan block for the eigenvalue 1, v is the only generalized
eigenvector of Mt0 , (Mt0 − I)2v = 0, and the error growth is, for general methods,
quadratic. However, some special methods still yield linear error growth. This will
happen, according to (20) and Lemma 3.4, when (25) holds and hence e(1)m ∈ S⊥.
The quadratic error growth is not excited because the e(1)m ’s have no component in
the direction of the generalized eigenvector v in (24). Therefore, from the lemma we
conclude the following result.

THEOREM 4.1. Assume that the numerical method (5), (6) satisfying the assump-
tions (i)–(v) in section 2.1 is applied to the integration of the Hamiltonian initial
value problem (1), (2) and (21) with T -periodic solution in the case (H2′′) above.
Assume that the method is either energy conserving or symplectic with constant step-
sizes. Then, for r ≤ m ≤ 2r − 1, ||e(N)

m || = O(N) as N ↑ ∞. More precisely, if
e
(N)
m is decomposed according to the eigenvectors and generalized eigenvectors of Mt0 ,

the components of e(N)
m along the eigenvectors of Mt0 with eigenvalue 1 are N times

larger than those of e(1)m , while the remaining components of e(N)
m remain bounded.

We emphasize that in the symplectic case constant stepsizes are required [7], [22,
Section 9.2], and the references therein.

5. Error growth in the integration of periodic orbits: The reversible
case.

5.1. Reversible systems. In this section we consider the case where the system
(1) being integrated is reversible [2], [23], [25], [26], [27], [19]. Let ρ be an involution
in RD, that is, a linear mapping in RD such that ρ2 = I. To avoid trivial cases,
we assume that ρ 6= ±I. Then RD is decomposed as a direct sum RD = X+ ⊕X−,
where ρv = v if v ∈ X+, ρv = −v if v ∈ X−, and the subspaces X+, X− have
dimension ≥ 1. Vectors inX+ (respectively, inX−) are called symmetric (respectively,
antisymmetric). The system (1) is said to be ρ-reversible if

f(ρx) = −ρf(x).(26)

An important example is given by the Newton equations of mechanics

ṗi = Fi(q1, . . . , qd), q̇i = pi, i = 1, . . . , d.(27)

These are reversible with respect to

ρ[p1, . . . , pd; q1, . . . , qd]
T = [−p1, . . . ,−pd; q1, . . . , qd]

T
.(28)
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ERROR GROWTH IN PERIODIC ORBITS 1403

They are also Hamiltonian if the vector of forces [F1, F2, . . . , Fd]
T is the gradient of

a scalar potential; then the Hamiltonian is given by H = (1/2)pT p + V (q). It is
clear that the example (27), (28) does not exhaust all reversible systems that are of
interest in the applications; other examples may be seen in [23]. Even for the Newton
equations (27), reversibility may hold for choice of ρ different from (28); for the Kepler
problem studied later we essentially use the involution given by reflection with respect
to the major semiaxis of the Keplerian ellipse instead of (28).

For each t, the flow ϕt of a ρ-reversible system is a ρ-reversible mapping; i.e.,

(ϕt)−1 = ρϕtρ.(29)

Since for flows (ϕt)−1 = ϕ−t, an alternative formulation is ϕ−t = ρϕtρ. In the example
(27), (28), this means that evolving backward in time is the same as changing the
sign of the initial velocities, evolving forward in time, and reversing the sign of the
final velocities.

Yet another equivalent formulation of the reversibility of the flow is

ρϕtρϕt = Id .(30)

This is convenient because it does not involve inverses or evolutions with −t.
A nontrivial periodic orbit x(·) of a ρ-reversible system (1), (26) is called sym-

metric [2] if the corresponding trajectory in phase space RD intersects the invariant
subspace X+ of ρ. It is very easy to check that the trajectory of a symmetric T -
periodic solution intersects X+ at exactly two points; the solution takes T/2 units of
time to move from one of the intersection points to the other. Furthermore, ρ maps
the symmetric trajectory into itself.

Just as in the Hamiltonian case (Lemmas 4.1 to 4.3), monodromy matrices of
reversible orbits have some special properties. These are studied next.

LEMMA 5.1. Assume that the solution x(·) of the reversible initial value problem
(1), (2) and (26) is periodic and symmetric and that x0 ∈ X+. Then the monodromy
matrix Mt0 is a ρ-reversible matrix; i.e.,

Mt0
−1 = ρMt0ρ.

Proof. From (30),

ρϕT ρϕT = Id ,

and computation of the Jacobian at x leads to

ρ · ϕ′
T (ρϕT (x)) · ρ · ϕ′

T (x) = I.

When x = x0, this reads

ρMt0ρMt0 = I,

because ρx0 = x0 and ϕT (x0) = x0.
LEMMA 5.2. The Floquet multipliers 6= ±1 of a symmetric periodic orbit of a

reversible system appear in quadruples λ, λ, λ−1, λ
−1

(|λ| 6= 1, =λ 6= 0) or real pairs
λ = λ, λ−1 = λ

−1
, or unimodular pairs λ = λ

−1
, λ = λ−1. The multiplicities and

Jordan structure of all four points of a quadruple (or both points of a pair) are the
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1404 B. CANO AND J. M. SANZ-SERNA

same. If the dimension D is even, then the (algebraic) multiplicity of the multiplier
1 is even ≥ 2.

Proof. Since the different monodromy matrices of a periodic orbit are related
by similarity transforms (section 2.4), we may assume that the initial value x0 is
one of the two points where the trajectory intersects X+. Then, by Lemma 5.1,
Mt0 is a reversible matrix, and we may apply known results [23] on the spectral
properties of reversible matrices. The issue of the multiplicity of 1 is settled as in
Lemma 4.1.

In the discussion of the error growth we shall need the following results.
LEMMA 5.3. In the situation of Lemma 5.1,

Ker(Mt0 − I) = [Ker(Mt0 − I) ∩X+] ⊕ [Ker(Mt0 − I) ∩X−].

In other words, the eigenvectors of Mt0 with eigenvalue 1 may be spanned by a ba-
sis consisting of symmetric eigenvectors (ρv = v) and antisymmetric eigenvectors
(ρv = −v).

Proof. We first show that there is at least an eigenvector that is in X+ or X−.
Choose v ∈ Ker(Mt0 − I), v 6= 0. If v ∈ X+ we are done; in the other case w =
v − ρv 6= 0 and

Mt0w = Mt0v −Mt0ρv = v − ρMt0
−1v = v − ρv = w,

so that w is an eigenvector in X−.
In a similar way we may prove that if v1+, . . . , vj

+, v1
−, . . . , vk

− are linearly in-
dependent eigenvectors, vi

± ∈ X±, and v /∈ X+ is an eigenvector independent of
v1

+, . . . , vj
+, v1

−, . . . , vk
−, then w = v − ρv ∈ X−, w 6= 0 provides an eigenvec-

tor independent of v+
1 , . . . , v

+
j , v

−
1 , . . . , v

−
k . Iteration of this argument constructs the

required basis.
LEMMA 5.4. In the situation of Lemma 5.1,

Ker(Mt0 − I)2 = [Ker(Mt0 − I)2 ∩X+] ⊕ [Ker(Mt0 − I)2 ∩X−];

i.e., the kernel Ker(Mt0 − I)2 can be spanned by symmetric and antisymmetric vec-
tors. More precisely, there is a basis of Ker(Mt0 − I)2 of the form v1

+, . . . , vj
+;

v1
−, . . . , vk

−; w1
+, . . . , wl

+; w1
−, . . . , wm

−, where
(i) the vi

+ are symmetric eigenvectors Mt0vi
+ = vi

+ = ρvi
+;

(ii) the vi
− are antisymmetric eigenvectors Mt0vi

− = vi
− = −ρvi

−;
(iii) the wi

+ are symmetric generalized eigenvectors ρwi
+ = wi

+, (Mt0 −I)wi
+ 6=

0;
(iv) the wi

−are antisymmetric generalized eigenvectors ρwi
− = −wi

−,(Mt0−I)wi
−

6= 0.
Furthermore, (Mt0 − I)wi

+ ∈ X−, i = 1, . . . , l, (Mt0 − I)w−
i ∈ X+, i = 1, . . . , l.

Proof. The proof is similar to that of the previous lemma and will not be
given.

Another useful result is the following.
LEMMA 5.5. In the situation of Lemma 5.1, assume that I is a conserved quantity

of the differential system being integrated and that ρ is orthogonal. If I is ρ invariant,
i.e., I(x) ≡ I(ρx), then ∇I(x0) ∈ X+.

Proof. From I(x) ≡ I(ρx), it follows that ∇I(x) ≡ ρT ∇I(ρx), so that ∇I(x0) ≡
ρT ∇I(x0). For an orthogonal involution, ρ = ρ−1 = ρT .

For the Newton case (28), ρ is obviously orthogonal. Since the energy H =
(1/2)pT p+ V (q) is obviously ρ invariant, then we have that ∇H(x0) ∈ X+.
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ERROR GROWTH IN PERIODIC ORBITS 1405

5.2. Symmetric periodic orbits and general integrators. After Lemma 5.2
it is straightforward to apply Theorem 3.2 to symmetric periodic orbits. There are
two possibilities corresponding to (G1) and (G2):

(R1) There is a Floquet multiplier of modulus 6= 1. Then, for r ≤ m ≤ 2r − 1,
e
(N)
m grows exponentially with N .

(R2) All Floquet multipliers have modulus 1. Then, for r ≤ m ≤ 2r − 1, e(N)
m

grows polynomially.
As in section 4.2, if the dimension D is even (as in (27)), then the growth in (R2) is
typically quadratic. The situation leading to linear error growth is the following:

(R2′) All Floquet multipliers have modulus 1 and trivial Jordan blocks. Then,
for r ≤ m ≤ 2r − 1, ||e(N)

m || = O(N).
We emphasize that for D even (R2′) is exceptional.
In section 5.5 below we return again to general integrators for symmetric periodic

orbits.

5.3. Reversible integrators. Reversible systems (1)–(26) may be integrated by
means of reversible integrators, [25], [26], [27]. The integrator in section 2.1 applied
to a reversible system is called reversible if (i) it uses a reversible formula, i.e., for
each h,

(ψh)−1 = ρψhρ(31)

(cf. (29)), and (ii) it uses a reversible stepsize selection function

s(x, ε) ≡ s(ρy, ε),(32)

where

y = ψεs(x,ε)(x).(33)

For reversible integrators,

ρψεs(ρy,ε)(ρy) = ρψεs(x,ε)(ρy) =
[
ψεs(x,ε)

]−1(y) = x,

so that the mapping χ(x) = ψεs(x,ε)(x) that advances the numerical solution satisfies

ρχ(ρ(χ(x))) ≡ x(34)

or, in other words, is reversible (cf. (30)).
Stoffer [26], [27] has studied conditions under which the formula ψh satisfies (31).

For Runge–Kutta and all other standard formulas, it is straightforward to check that

ρψhρ = ψ−h = (ψ∗
h)−1,(35)

where the adjoint ψ∗
h of ψh is, by definition, the scheme such that ψ∗

h = (ψ−h)−1

[17, Section II.8]. In view of (35), it is clear that, for such standard formulas, (31)
holds if and only if ψh is self-adjoint, i.e., is its own adjoint. Obviously self-adjoint
schemes satisfy ψ−h = (ψh)−1; i.e., they are time reversible. Examples of Runge–
Kutta methods that are self-adjoint and therefore ρ reversible include all collocation
methods with symmetric abscissas [17]. Also note that if ψh is a method of order r,
then ψ̄h = ψh/2ψ

∗
h/2 defines a new method of order ≥ r that is self-adjoint; see, e.g.,

[7, Section 3.6.2].
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1406 B. CANO AND J. M. SANZ-SERNA

Several ways of ensuring the reversibility (32) of the stepsize function are discussed
by Stoffer [27]. Here we focus on the technique suggested by Hut, Makino, and
McMillan [18]. Let τ(x) be a positive function defined in the phase space RD. We
may think that τ(x) provides a local characteristic time in such a way that, from
the point of view of local accuracy, ετ(x) is a suitable steplength at x. However, the
choice s(x, ε) = τ(x) does not satisfy (32), and to ensure reversibility the steplength
h = εs(x, ε) to be used at x is determined by iteratively solving the equation

h =
ε

2
[τ(x) + τ(ψh(x))].(36)

This involves attempting several steps ψh(1)(x), ψh(2)(x), . . . from x, with

h(n) =
ε

2
[τ(x) + τ(ψh(n−1)(x))].(37)

This iteration is stopped once a value h = hn is found such that h(n) ≈ h(n−1).
Clearly, if (37) has to be applied ν times at a given xn, then the cost of finding
xn+1 is ν times the cost of evaluating ψh once. Therefore, this is a rather expensive
technique. Alternative techniques described in [27] also require iteration.

It is straightforward to check that, by the implicit function theorem, (36) defines,
for ε small, a steplength function s(x, ε) such that s(x, ε) = τ(x) +O(ε). Thus s(x, ε)
is a small perturbation of the characteristic time τ(x). Furthermore, this construction
ensures reversibility as the following result shows.

LEMMA 5.6. If the formula ψh is reversible, i.e., (31) holds, and

τ(x) ≡ τ(ρ(x)),(38)

then the stepsize function s(x, ε) defined implicitly by (36) satisfies the reversibility
condition (32).

Proof. By (36) and (33),

εs(x, ε) =
ε

2
[τ(x) + τ(ψεs(x,ε)(x))]

=
ε

2
[τ(ψ−1

εs(x,ε)(y)) + τ(y)]

and (31) yields

εs(x, ε) =
ε

2
[τ(ρψεs(x,ε)(ρy)) + τ(y)].

Now, by (38)

εs(x, ε) =
ε

2
[τ(ρy) + τ(ψεs(x,ε)(ρy))],

an equality that, when compared with (36), shows that εs(x, ε) is the steplength to
be used at ρy.

5.4. Symmetric orbits and reversible integrators. When the integrator is
reversible, it is possible to have linear growth in situations far more general than
(R2′). Let us first consider the following lemma that constrains the e(1)m and thus
plays here the role played by Lemma 4.4 in the Hamiltonian case.

LEMMA 5.7. Assume that the solution of the reversible initial value problem (1),
(2) and (26) is a symmetric periodic orbit, that x0 ∈ X+, and that the integrator
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ERROR GROWTH IN PERIODIC ORBITS 1407

(5), (6), satisfying the assumptions (i)–(v) in section 2.1 is reversible. Then, for
r ≤ m ≤ 2r − 1,

e(1)m = −Mt0ρe
(1)
m .(39)

Proof. Restrict the attention to the values of ε for which t0 + T is a step point tn
and n = n(ε), and consider the mapping ψε defined by

ψε = ψhn
◦ · · · ◦ ψh2 ◦ ψh1 ,

where hn is the sequence of the stepsizes used to move from x0 to xn. From hypothesis
(iv) in section 2.1 and (10), ψε

′ = Mt0 +O(εr). From the reversibility of the method,
ψε(ρxn) = ρx0 = x0. Therefore,

x0 = ψε(x0 + εrρe(1)r + · · · + ε2r−1ρe
(1)
2r−1 +O(ε2r))

= ψε(x0) + εrMt0ρe
(1)
r + · · · + ε2r−1Mt0ρe

(1)
2r−1 +O(ε2r),

or, in view of the relation ϕtn
(x0) = x0,

−(xn − ϕtn(x0)) = εrMt0ρe
(1)
r + · · · + ε2r−1Mt0ρe

(1)
2r−1 +O(ε2r),

and the result follows.
We now look at the following situation.
(R2′′) All Floquet multipliers of the symmetric orbit have modulus 1. The multi-

pliers 6= 1 have trivial Jordan blocks. The sizes of the Jordan blocks for the multiplier
1 are ≤ 2 and furthermore, with the notation of Lemma 5.4, there are no antisym-
metric generalized eigenvectors w−

i .
(R2′′) includes the following cases. (1) All symmetric orbits in two dimensions

D = 2. There is a symmetric direction and an antisymmetric direction, but the anti-
symmetric direction corresponds to the eigenvector f(x0) by (26). (2) All symmetric
orbits where 1 is a double multiplier and the remaining multipliers are simple with unit
modulus. An antisymmetric generalized eigenvector for the eigenvalue 1 would imply,
via Lemma 5.4, the existence of a symmetric eigenvector. These two vectors and the
antisymmetric eigenvector f(x0) would require at least a triple Floquet multiplier at
1. This case is structurally stable; i.e., it remains under reversible perturbations. (3)
Some special cases, where ρ is orthogonal, there is an invariant conserved quantity I
and all solutions on the surface {x : I(x) = I(x0)} are periodic with the same period
T . Then all vectors orthogonal to ∇I(x0) are eigenvectors with eigenvalue 1 and
∇I(x0) is an eigenvector or generalized eigenvector that is symmetric by Lemma 5.5.
Note that in all this discussion we have assumed that x0 ∈ X+. This involves no loss
of generality. By the symmetry of the orbit there is a point on the trajectory that is in
X+; if this point is the initial value then we have x0 ∈ X+. Changing the initial value
along the trajectory changes the monodromy matrix by a similarity transformation
and preserves the Jordan structure.

THEOREM 5.1. Assume that the solution of the reversible initial value problem
(1), (2) and (26) is a symmetric periodic orbit of type (R2′′), that x0 ∈ X+, and that
the integrator (5), (6) satisfying the assumptions (i)–(v) in section 2.1 is reversible.
Then, for r ≤ m ≤ 2r − 1, ||e(N)

m || = O(N) as N ↑ ∞. More precisely if e(N)
m is

decomposed according to the eigenvectors and generalized eigenvectors of Mt0 , then
(i) e(N)

m has no component in the direction of the symmetric eigenvectors v+
i and

symmetric generalized eigenvectors w+
i of the multiplier 1;
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1408 B. CANO AND J. M. SANZ-SERNA

(ii) the components of e(N)
m in the direction of the antisymmetric eigenvectors of

the multiplier 1 are N times larger than the corresponding components in e
(1)
m ;

(iii) the remaining components of e(N)
m remain bounded as N ↑ ∞.

Proof. Let V +
m , V −

m , and W+
m , respectively, be the components of e(1)m in the

direction of the symmetric eigenvectors, antisymmetric eigenvectors, and symmetric
generalized eigenvectors of the multiplier 1. Recall that for (R2′′) there is no anti-
symmetric generalized eigenvector. By (39)

V +
m + V −

m +W+
m = −Mt0(V

+
m − V −

m +W+
m)

= −V +
m + V −

m −Mt0W
+
m

and, from Lemma 5.4, Mt0W
+
m = W+

m + V ∗−, where V ∗− is an antisymmetric eigen-
vector. Then

V +
m + V −

m +W+
m = −V +

m + V −
m −W+

m − V ∗−;

so that the uniqueness of the decomposition implies W+
m = −W+

m or W+
m = 0 and

accordingly V ∗− = 0. Thus V +
m + V −

m = −V +
m + V −

m and hence V +
m = 0. This proves

(i). Parts (ii) and (iii) are covered by Lemma 3.2.
Remark. In the theorem the hypothesis x0 ∈ X+ is not essential; for a reversible

integration of a symmetric orbit satisfying (R2′′) the growth is O(N) even if x0 /∈ X+.
To see this, assume that x0 /∈ X+ and let t∗ be the smallest time t∗ > t0 for which
x(t∗) ∈ X+. For r ≤ m ≤ 2r−1, the integral (14) that gives e(N)

m may be decomposed
as follows:

e(N)
m =

∫ t0+NT

t0

M(t0 +NT, s)σm(s)ds

=
∫ t0+NT

t∗+(N−1)T
+

∫ t∗+(N−1)T

t∗
+

∫ t∗

t0

= I1 + I2 + I3.

The integral I2 may be rewritten as∫ t∗+(N−1)T

t∗
M(t0 +NT, s)σm(s)ds

= M(t0 +NT, t∗ + (N − 1)T )
∫ t∗+(N−1)T

t∗
M(t∗ + (N − 1)T, s)σm(s)ds

= M(t0 +NT, t∗ + (N − 1)T )Î2 = M(t0 + T, t∗)Î2.

The integral Î2 is easily interpreted. Imagine a second integration of the symmetric
orbit, starting from the initial condition x(t∗) ∈ X+ at the initial time t∗. Then Î2 is
clearly the value of e(N−1)

m for this auxiliary integration. Since Theorem 5.1 applies,
||Î2|| = O(N) and hence ||I2|| = O(N).

For I1 we may write, by periodicity,

I1 =
∫ t0+T

t∗
M(t0 + T, s)σm(s)ds

so that I1 is independent of N . Finally,

I3 = MN−1
t0

∫ t∗

t0

M(t0 + T, s)σm(s)ds

grows like O(N) in view of the Jordan structure of Mt0 .
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ERROR GROWTH IN PERIODIC ORBITS 1409

5.5. Symmetric orbits and general integrators of even order. If the orbit
is symmetric and satisfies (R2′′) and the integrator, without being reversible, satisfies
(35) and is of even order r, then it is possible to have linear growth in the leading error
term e

(N)
r . This was first noticed in [7] for the particular case of Kepler’s problem.

For a proof, note that if r is even,

ψ∗
h − ψh = (φh − ψh) − (φh − ψ∗

h) = O(hr+2),

because the leading terms of the local error of ψh and ψ∗
h coincide [17, Theorem 8.6].

From here we conclude that (31) is satisfied except for an O(hr+2) remainder. If, with
the notation of (32), (33), we consider stepsize selection functions such that

s(x, ε) = s(ρy, ε) +O(ε),(40)

then (34) holds except for an O(εr+2) remainder, and the proofs of Lemma 5.7 and
Theorem 5.1 apply to the leading error term. We note that (40) holds if

s(x, ε) = s(ρx, ε),

a natural condition that would be satisfied for the stepsize strategies used in standard
codes.

THEOREM 5.2. Assume that the solution of the reversible initial value problem (1),
(2) and (26) is a symmetric periodic orbit of type (R2′′). Assume that the integrator
(5), (6) satisfying the assumptions (i)–(v) in section 2.1, (35), and (40) is of even
order r. Then the conclusions of Lemma 5.7 and Theorem 5.1 hold for m = r.

6. A numerical illustration. The planar Kepler system is the Hamiltonian
system (22) with two degrees of freedom (d = 2) and Hamiltonian function

H =
1
2
(p2

1 + p2
2) − 1

R
, R =

√
q21 + q22 .

This is integrated with the initial conditions

p1 = 0, p2 =

√
1 + e

1 − e
, q1 = 1 − e, q2 = 0,

where e is a parameter (0 ≤ e < 1). The solution is periodic with period T = 2π,
and its projection onto the configuration (q1, q2)-plane is an ellipse with eccentricity
e. The major axis of the ellipse lies along the 0q1 axis and the motion starts at t0 = 0
from the pericenter of the ellipse. Recall that the pericenter lies on the major semiaxis
and is the point on the ellipse closest to the focus, i.e., to the center of the attracting
force.

Since we are dealing with a particular instance of the Newton equations (27), the
system is ρ reversible for the involution ρ in (28). The invariant subspace X+ for
(28) is given by p1 = p2 = 0 and does not intersect the periodic trajectory under
consideration. (For an elliptic Keplerian motion the components p1, p2 of the velocity
never vanish simultaneously; planets never stand still.) Therefore, the periodic orbit
is not symmetric with respect to (28). However, it is symmetric with respect to the
alternative orthogonal involution

ρ̄(p1, p2, q1, q2) = (−p1, p2, q1,−q2).
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1410 B. CANO AND J. M. SANZ-SERNA

Clearly ρ̄, restricted to the configuration space, represents the symmetry (q1, q2) →
(q1,−q2) with respect to the major axis of the configuration ellipse. Note also that
the hypothesis x0 ∈ X+ in Theorem 5.1 holds.

The monodromy matrix Mt0 is given by [7]

Mt0 = I +W0∇H(x0)T ,

where ∇H(x0) is the energy gradient at the initial point x0 in R4 and W0 is a nonzero
vector in R4 in the direction of f(x0), i.e., tangent in phase space at x0 to the trajec-
tory being integrated. For vectors v orthogonal to ∇H(x0), Mt0v = v, so that with
the notation in section 4, M⊥

t0 is the identity and all vectors in S⊥ are eigenvectors
with eigenvalue 1. On the other hand,

Mt0∇H(x0) = ∇H(x0) + ||∇H(x0)||2W0

and ∇H(x0) is a generalized eigenvector with eigenvalue 1. Thus the solution is
case (H2′′) (but not case (H2′)). Furthermore, by Lemma 5.5, ∇H(x0) is in the
invariant subspace X+ of ρ̄. Thus the solution is in (R2′′) (but not in (R2′)). From
sections 4 and 5 we know that the e(N)

m , r ≤ m ≤ 2r − 1, grow quadratically for
general integrators and linearly for energy-conserving integrators, constant stepsize
symplectic integrators, and reversible integrators. As a side remark we point out that
angular momentum [22, Section 1.2.4] is also a ρ̄-invariant conserved quantity. Its
gradient at x0 is therefore a symmetric eigenvector. By Theorem 5.1, for reversible
integrators, e(N)

m , r ≤ m ≤ 2r − 1, has no component in the direction of the energy
or angular momentum gradients, which implies that the errors in energy and angular
momentum at time t0 +NT behave as O(ε2r).

Since it is not possible to find an energy-preserving integration formula for this
problem within the standard classes of one-step methods (Runge–Kutta, Runge–
Kutta–Nyström, Taylor, etc.) we concentrate on symplectic and reversible methods.

The following formulas are considered.
(NRF). Nonreversible formula. We have chosen an optimized fourth-order, ex-

plicit, symplectic Runge–Kutta–Nyström formula developed by Calvo and Sanz-Serna
[7]. This formula is not self-adjoint and hence is not reversible.

(RF). Reversible formula. A step of length h of this is defined by the concatenation
ψ∗

h/2ψh/2 of a step of length h/2 with the formula of Calvo and a step of length h/2
with the adjoint formula. The concatenation is a fourth-order, symplectic, explicit
[20] Runge–Kutta–Nyström formula that is self-adjoint and hence is reversible.

These two formulas were combined with the following stepsize functions s(x, ε).
(NRS). Nonreversible stepsize function. This is defined by s(p1, p2, q1, q2, ε) =

τ(p1, p2, q1, q2), where

τ(p1, p2, q1, q2) = min
{√

q21 + q22√
p2
1 + p2

2

,
π

2
√

2
(q21 + q22)

3/4
}
.

The first function in the min represents the time required to cover, at the current
speed, the current distance to the center of the forces. The second function is the
time for a free (zero initial velocity) fall into the center from the current configuration.
This choice of τ is suggested in [18].

(RS). Reversible stepsize function. This is defined by (36) with τ as in NRS.
We have implemented three integrators, (NRF)-(RS), (RF)-(NRS), (RF)-(RS).

All three use symplectic formulas, but only (RF)-(RS) is reversible in the sense of
section 5.3. Figure 1 corresponds to the (NRF)-(RS) algorithm. The (logarithmic)
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FIG. 2.

horizontal axis is the time t and the (logarithmic) vertical axis gives errors measured in
the Euclidean norm of R4. The eccentricity is e = 0.5. The stars give the errors after
10, 30, 90, . . . , 21870 periods of the motion for ε = 1/80, 1/160, 1/320. Clearly the
error growth is quadratic for t > 10, 000 (for comparison we have included dotted lines
with slopes 1 and 2 corresponding to linear and quadratic error growth). This figure
confirms the results in [7]: symplectic integrators like NRF with variable stepsizes
behave as general nonsymplectic integrators; see also [22, Section 9.2] and references
therein. For t small, the quadratic growth does not manifest itself for reasons analyzed
in section 5.5. For even-order methods O(εr) error term only grows linearly; for t small
this term dominates the expansion, and the quadratic growth of the remaining terms
is not yet visible.

Figure 2 is as Fig. 1, but now the algorithm is (RF)-(RS) and ε = 1/20, 1/40,
1/80. Clearly the error growth is linear in agreement with the reversibility of the
algorithm.
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In Fig. 3 the algorithm is (RF)-(NRS) and ε = 1/80, 1/160, 1/320. The growth
is again quadratic. A reversible formula is not enough for linear growth: a reversible
stepsize selection is also required.

As discussed in detail in [7], for symplectic formulas the advantages of linear
growth and variable stepsizes cannot be combined. For fourth-order integrators and
orbits of low or moderate eccentricity, it pays to use a symplectic formula with constant
stepsize. For high eccentricities, say e = 0.9, the motion is very fast near the pericenter
and very slow near the apocenter, and the best choice of a fourth-order integrator
consists of a nonsymplectic formula with constant stepsizes. We have shown in Fig. 2
that with reversible integrators it is possible to have simultaneously linear growth
and variable stepsizes. Unfortunately, the reversible stepsize function (RS) involves
iteration, see (37), and makes each step of the algorithm rather expensive. Even
though the purpose of this paper is not to discuss the relative efficiency of different
kinds of algorithms, we present in Fig. 4 an efficiency plot for e = 0.9. The vertical axis
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ERROR GROWTH IN PERIODIC ORBITS 1413

is error after 21,870 periods (t = 21, 870×2π) and the horizontal axis is work measured
by the number of force evaluations. The solid line corresponds to the fourth-order
Runge–Kutta–Nyström algorithm (RF)-(RS) run with ε = 1/40, 1/80, 1/160, 1/320.
The dotted line corresponds to a standard, optimized 3–4, Runge–Kutta–Nyström
embedded pair by Dormand, El-Mikkawy, and Prince [9] and [22, Example 5.1] run
with tolerances 10−11, 10−12, 10−13. The reversible algorithm is more efficient than
the standard code. More experiments in this direction can be seen in [27].

Remark. Strictly speaking, Kepler’s system of differential equations does not
satisfy the hypotheses in section 2: there is a singularity at R = 0. However, Kepler’s
system would be covered by a modification of the theory in this paper catering to
the case in which the domain of f is not the whole of RD. Alternatively, one may
change the potential energy −1/R away from the periodic orbit being integrated
so as to render it globally smooth and even with bounded derivatives of all orders.
Specifically, for the orbit at hand, 1−e ≤ R ≤ 1+e, and we could change the potential
for R < (1 − e)/2 and R > 2(1 + e). For all the runs reported in Figs. 1–4 with the
true, singular Kepler problem, the computed points have (1 − e)/2 < R < 2(1 + e),
so that the various methods are yielding the same solution they would have yielded
had we used the regularized potential. Therefore, for the analysis, we can pretend we
ran a regular problem.

7. Technical results. In the situation of section 2.1 let us prove the existence
of the asymptotic expansion (12). We first need the following auxiliary result.

LEMMA 7.1. Let v and w be the solutions of the initial value problems

v̇(t) = J(t)v(t), v(tn) = α,

ẇ(t) = J(t)w(t) + µ(t), w(tn) = α,

where J is a smooth D×D matrix, µ is a smooth source term, tn is a real value, and
α is a given vector in RD. Then we have the asymptotic expansion

w(tn + h) − v(tn + h) = hc1(tn) + h2c2(tn) + · · · , h → 0,

where c1(tn) = µ(tn) and the ci, i ≥ 2, are smooth functions that depend on J and
µ but are independent of α. Furthermore, if J and µ are T periodic, then so are the
functions ci.

Proof. If δ(t) = w(t) − v(t), then δ̇ = Jδ + µ, δ(tn) = 0, and

w(tn + h) − v(tn + h) = hδ̇(tn) +
h2

2
δ̈(tn) + · · · .

Differentiation in the differential equation leads succesively to

δ̇(tn) = J(tn)δ(tn) + µ(tn) = µ(tn),
δ̈(tn) = J̇(tn)δ(tn) + J(tn)δ̇(tn) + µ̇(tn) = J(tn)µ(tn) + µ̇(tn),

...

δ (tn) = J̈(tn)δ(tn) + 2J̇(tn)δ̇(tn) + J(tn)δ̈(tn) + µ̈(tn)

= 2J̇(tn)µ(tn) + J(tn)2µ(tn) + J(tn)µ̇(tn) + µ̈(tn),

etc. This concludes the proof.
To investigate the existence of the asymptotic expansion (12), fix a final time

tmax > t0 and consider the sequences {xn}, {tn} delivered by the method with t0 ≤
tn ≤ tmax. Set

x̂n = xn − εrer(tn) − · · · − ε2r−1e2r−1(tn),
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1414 B. CANO AND J. M. SANZ-SERNA

where the functions em, r ≤ m ≤ 2r − 1, satisfy the variational problems (13) with
(smooth) sources σm yet to be determined.

The x̂n satisfy the one-step recursion

x̂n+1 = Ψ(x̂n, tn, hn, ε)

with

Ψ(x̂, t, h, ε) = −εrer(t+ h) − · · · − ε2r−1e2r−1(t+ h)
+ψh(x̂+ εrer(t) + · · · + ε2r−1e2r−1(t)).

Therefore the “global errors” x̂n − x(tn), t0 ≤ tn ≤ tmax can be bounded by a
product CL, where C is a constant (that increases with tmax) and L is a bound for
the quantities hn

−1ρn, with

ρn = x(tn+1) − Ψ(x(tn), tn, hn, ε)
= x(tn+1) + εrer(tn+1) + · · · + ε2r−1e2r−1(tn+1)

−ψhn
(x(tn) + εrer(tn) + · · · + ε2r−1e2r−1(tn));(41)

the ρn play the role of “local errors.” Our aim is to show that the sources σm can be
chosen so that ρn = hnO(ε2r).

We begin by adding and subtracting ψhn
(x(tn)) in (41). This brings in the local

error x(tn+1) − ψhn
(x(tn)) at tn that may be expanded as in (4). Thus

ρn = hr+1
n λr+1(x(tn)) + · · · + h2r

n λ2r(x(tn)) +O(h2r+1
n )

+εrer(tn+1) + · · · + ε2r−1e2r−1(tn+1)(42)
+ψhn

(x(tn)) − ψhn
(x(tn) + εrer(tn) + · · · + ε2r−1e2r−1(tn)).

Next, in (42),

ψhn
(x(tn)) − ψhn

(x(tn) + εrer(tn) + · · · + ε2r−1e2r−1(tn))
= −ψ′

hn
(x(tn)) · [εrer(tn) + · · · + ε2r−1e2r−1(tn))] + hnO(ε2r).(43)

Here we have noted that the second derivatives of ψh with respect to x are O(h)
because ψh=0(x) = x by consistency. Furthermore, in (43) we may replace ψ′

hn
(x(tn))

by ϕ′
hn

(x(tn)), because these Jacobian matrices differ in terms O(hr+1
n ), i.e., hnO(εr),

that can be absorbed in the remainder. On combining (43) and (42), we obtain

ρn = hr+1
n λr+1(x(tn)) + · · · + h2r

n λ2r(x(tn)) +O(hn
2r+1)

+εr[er(tn+1) − ϕ
′
hn

(x(tn))er(tn)]
· · ·
+ε2r−1[e2r−1(tn+1) − ϕ

′
hn

(x(tn))e2r−1(tn)] + hnO(ε2r).(44)

Here we note, see (11), that ϕ′
hn

(x(tn)) = M(tn+1, tn), so that, for r ≤ m ≤ 2r − 1,
ϕ′

hn
(x(tn))em(tn) is the value vm(tn +hn) at tn+1 of the solution of the homogeneous

variational problem v̇m = Jvm, vm(tn) = em(tn). Since em satisfies a nonhomoge-
neous variational problem, Lemma 7.1 applies and

em(tn+1) − ϕ′
hn

(x(tn))em(tn) = hncm,1(tn) + h2
ncm,2(tn) + · · · .
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ERROR GROWTH IN PERIODIC ORBITS 1415

Substitution in (44) yields

hn
−1ρn = hr

nλr+1(x(tn)) + · · · + h2r
n λ2r(x(tn))

+εrcr,1(tn) + εrhncr,2(tn) + · · · + εrhr−1
n cr,r(tn)

+εr+1cr+1,1(tn) + εr+1hncr+1,2(tn) + · · · + εr+1hr−2
n cr+1,r−1(tn)

+ · · ·
+ε2r−1c2r−1,1(tn) +O(ε2r).(45)

In the right-hand side of (45), hn = εs(xn, ε) may be replaced by εs(x(tn), ε) because
s(xn, ε) − s(x(tn), ε) = O(εr). The result is

hn
−1ρn = εrs(x(tn), ε)r

λr+1(x(tn)) + · · · + ε2rs(x(tn), ε)2r
λ2r(x(tn))

+εrcr,1(tn) + εr+1s(x(tn), ε)cr,2(tn) + · · ·
+εr+1cr+1,1(tn) + εr+2s(x(tn), ε)cr+1,2(tn) + · · ·
+ε2r−1c2r−1,1(tn) +O(ε2r).

We now collect like powers of ε. At order εr we have a coefficient

s(x(tn), 0)r
λr+1(x(tn)) + cr,1(tn)

or, by Lemma 7.1,

sr(x(tn), 0)λr+1(x(tn)) + σr(tn) = 0,(46)

so that the choice σr(t) = sr(x(t), 0)λr+1(x(t)) ensures that hn
−1ρn = O(εr+1). When

σr has been determined, cr,2, cr,3, . . . become known functions of t, as in Lemma 7.1.
At the next, εr+1 order, we have a coefficient

∂

∂ε
sr(x(tn), 0)λr+1(x(tn))

+ sr+1(x(tn), 0)λr+2(x(tn)) + s(x(tn), 0)cr,2(tn) + σr+1(tn) = 0,(47)

which determines σr+1 and therefore the cr+1,i. Iterating this procedure we determine
all the required sources, and the existence of the asymptotic expansion is established.

Now suppose that the solution x(·) is T periodic. Clearly σr as given by (46) is
also T periodic. By Lemma 7.1, the cr,i are also T periodic, so that (47) implies that
σr+1 is also T periodic, etc. This periodicity only holds for the lower sources σm,
r ≤ m ≤ 2r − 1.

8. Concluding remarks. For constant stepsizes, the existence of the asymp-
totic expansion of the global error (12) is of course well known. A detailed classical
treatment is given by Stetter [24]. A simpler proof is given in [17, Section II.8]
following an idea of Hairer and Lubich. These known proofs may be extended to
various variable stepsize algorithms. However, none of the available proofs meets our
needs here. For us it is crucial to know that for periodic problems the sources σm,
r ≤ m ≤ 2r−1 are periodic. Existing proofs write σm, m > r, in terms of the periodic
local error contribution λm+1 and of the earlier computed er, . . . , em−1, and these
are not periodic!
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1416 B. CANO AND J. M. SANZ-SERNA

It is clear that the expansion (12) is not uniform in time, in the sense that R(t, ε)
will in general grow with time. The techniques in this paper have enabled us to
study the growth of the em(t), r ≤ m ≤ 2r − 1, but give no indication of the growth
of the reminder and therefore cannot settle the question of how the global error
xn −x(tn) behaves as t increases with fixed ε. This limitation is a direct consequence
of the generality of our hypotheses. Throughout, we have only assumed a very small
knowledge of the differential system: essentially we have only required information on
the monodromy matrix of the orbit being integrated. It is clear that the behavior of
the global errors is determined not only by the solution being integrated but also by
the geometry of all solutions of the differential system, and therefore we do not really
have enough information to estimate the whole global error xn − x(tn). When this
information is available it is possible to also estimate the remainder. This is done by
Calvo and Hairer [6], but the price to pay is that they need to assume that any two
solutions of the system deviate linearly from one another as t increases. Even stronger
hypotheses are introduced in the work by Estep and Stuart [13], who demand that
the problem be Hamiltonian and all solutions be periodic with a period depending
only on the energy; an exceptional situation indeed.

The fact that no indication is given here as to the growth of the remainder does
not at all imply that our results are irrelevant: we have ascertained the size of the
errors as ε decreases with t large but fixed!
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