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LONG-TIME-STEP METHODS FOR OSCILLATORY
DIFFERENTIAL EQUATIONS*

B. GARCIA-ARCHILLAT, J. M. SANZ-SERNA¥, AND R. D. SKEELS

Abstract. Considered are numerical integration schemes for nondissipative dynamical systems
in which multiple time scales are present. It is assumed that one can do an explicit separation
of the RHS “forces” into fast forces and slow forces such that (i) the fast forces contain the high
frequency part of the solution, (ii) the fast forces are conservative, and (iii) the reduced problem
consisting only of the fast forces can be integrated much more cheaply than the full problem. The
fast forces are allowed to have low frequency components. Particular applications for which the
schemes are intended include N-body problems (for which most of the forces are slow) and nonlinear
wave phenomena (for which the fast forces can be propagated by spectral methods). The assumption
of cheap integration of fast forces implies that the overall cost of integration is primarily determined
by the step size used to sample the slow forces. A long-time-step method is one in which this step size
exceeds half the period of the fastest normal mode present in the full system. An existing method
that comes close to qualifying is the “impulse” method, also known as Verlet-I and r-RESPA. It is
shown that it might fail, though, for a couple of reasons. First, it suffers a serious loss of accuracy
if the step size is near a multiple of the period of a normal mode, and, second, it is unstable if
the step size is near a multiple of half the period of a normal mode. Proposed in this paper is a
“mollified” impulse method having an error bound that is independent of the frequency of the fast
forces. It is also shown to possess superior stability properties. Theoretical results are supplemented
by numerical experiments. The method is efficient and reasonably easy to implement.
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1. Introduction. We consider the numerical integration of systems of special
second-order differential equations with multiple time scales such as those arising from
N-body problems and from the spatial discretization of partial differential equations
describing wave phenomena. More specifically, we assume that the system has the
form

d2

a2l
where M is a diagonal mass matrix and the RHS force vector is explicitly split into
two parts, the first part being a gradient and contributing fast modes to the motion

and the second part not containing any fast modes. More precisely, the first term is
fast in the sense that M1/ WeeM —1/2 has some large positive eigenvalues, and the

M Wy(q) + F(q),
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second term is slow in the sense that —M~/2F,M~/2 has only small eigenvalues.
The first term is allowed to have eigenvalues of small modulus. If F(q) is a gradient
—U,(q), our system is a Hamiltonian system and we ask then that our integrator be
symplectic [12].

In special cases where W (q) has the form %Z ;95 (q)2, it is possible to consider
imposing constraints g;(¢) = 0 thus obtaining reduced variable dynamics. This can
be justified by averaging arguments, which often involve the addition of terms to
the differential equation in order to account for things that do not average out to
zero, e.g., [3]. The computational costs of computing these additional terms and of
imposing the constraints can be considerable.

We study in this paper a less radical approach based on approximation of the full
dynamics. Many of the interactions that constitute the collection of forces in a given
physical problem can be permanently classified as fast or slow. For interactions of
variable speed, it may be computationally efficient to split them artificially into fast
and slow parts [14]. The idea behind the division into —W,(q) + F(q) is to sample
terms of F(q) infrequently and incorporate them into a reduced problem involving
W(q). We define a long-time-step method to be one that samples the slow force at
time increments greater than half the period! of the fastest oscillation in the system.
The reduced problem might be solved analytically or it might be solved by a numerical
scheme using shorter step sizes, in which case the overall method is a two-time-step
scheme. This idea might, of course, be applied recursively the reduced problem
itself can be solved with a not-quite-as-long-time-step method, and so on, resulting
in a hierarchy of step sizes. The fast/slow splitting is worthwhile only if the cost of
integrating the reduced system is much less than the cost of integrating the whole
system. This could happen for either or both of the following reasons.

1. The bulk of the force calculation involves interactions that are slow, which is
the case for molecular dynamics and other N-body problems. Also, it might
be noted that the fast interactions tend to be local in space so that in a
parallel implementation, slow interactions are likely to be those that require
the most communication.

2. The cost of integrating the reduced system for long step sizes is not much
greater than the cost for short step sizes. This is the case if the reduced
system can be solved analytically, for example, using spectral methods.

One potential candidate for long-time-step integration is the Verlet-1/r-RESPA im-
pulse method [7, 15], but in practice it seems to qualify only as a medium-time-step
method. In this paper, we explain the poor behavior of the impulse method by an
analysis of its stability and accuracy. We also propose a nontrivial improvement of the
impulse method that we call the mollified impulse method, for which superior stability
and accuracy is demonstrated. Numerical evidence is also provided.

The impulse method can be expressed using the Dirac delta function as the fol-
lowing approximation:

2 oo
(1) Mg = Wola)+ Y hslt - nh)F(g)

a formulation first published in [17]. Hence in the so-called endpoint version, a step
n — n + 1 of the method can be described, with p = M (d/dt)q, as follows:

1This seems to represent a theoretical barrier of some kind.
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kick add (h/2)F(g,) to p, to get p;t;

oscillate use the h-flow of (d/dt)p = —W,(q), (d/dt)qg = M ~'p to advance from
(D) an) to (D1 ns1);

kick add (h/2)F(qny1) to p, 4 to get pni1.

Note that the force F((¢"*1) at the second kick of the current step coincides with the
force at the first kick of the next step; hence there is really one impulse at each step
point ¢ = nh. The impulse method is derived as a multiple-time-step (MTS) method
in [5, 7], but these writings express little enthusiasm for the method because of the
possibility of resonance if the period A of the impulse should happen to coincide with
a natural frequency of the reduced system M (d?/dt*)qg = —W,(gq). The resonance is
demonstrated experimentally in [1]. Also, molecular dynamics experiments in [4] seem
to indicate that the step size has to be less than the resonance value, which is 9-10 fs
for fully flexible classical mechanics models of molecules. Other experiments [6, 8]
show the inferiority of the impulse method (Verlet-I) in a Langevin dynamics setting,
in which a random noise term and a balancing damping term are added to Newton’s
second law of motion. The restriction h{) < 27 is assumed in [18] for all frequencies
Q present in a Poisson series. In sections 2 and 6 of this paper it is shown that the
impulse method is not uniformly convergent—it undergoes an order reduction from
two to one in positions and from two to zero in velocities as h approaches 2w /Q. A
much smaller limit on the step size, however, is suggested by other computational
experience with the impulse method [9, 16], in particular, a step size of less than
5 fs is needed in molecular dynamics to prevent energy growth. Moreover, recent
experiments on a large molecular system [2] show that for step sizes of 6 to 7 fs the
energy growth is less severe than for 5 fs. We give in this paper a linear analysis that
reveals instability for step sizes just less than half the shortest period of any normal
mode. This instability can produce exponential energy growth as time increases,
regardless of how soft the slow forces are. In technical terms, the impulse MTS
method is only “weakly” stable for long step sizes. In conclusion the impulse method
is not a long-time-step method in the sense we defined above; i.e. it cannot operate
successfully when sampling the slow force at time increments greater than half the
period of the fastest oscillations in the problem.

It is very important to emphasize that we assume that, in the impulse method,
the reduced problem (d/dt)p = —W,(q), (d/dt)q = M ~'p is solved either analytically
or with “short” step sizes. This implies that the method is keeping track of all the
fast scales present in the problem and, in particular, would be ezact in the absence of
slow forces. Its shortcomings may therefore come as an unpleasant surprise.

The enhancement that we propose for the impulse method involves modifying the
strength of the impulses F'(g,,) to become A, (h; ¢n) T F(A(h; gn)). Evaluation of F at
A(h; g,) represents an averaging; F(A(h;q,)) is expected to be a better description
of the quickly varying F'(q(t)) than the values of F' at step points used by the impulse
method. The transpose Jacobian A, (h; g,)T compensates for the effect of treating the
slow force as an impulse (see the opening example in section 2). Different choices of
the averaging operator A(h;g,) are possible and lead to different numerical methods.

As is the case in the impulse method, the method suggested here uses an “exact”
integration of the reduced problem (d/dt)p = —W,(q), (d/dt)q = M~'p and would
be exact in the absence of slow forces. This is at variance with the situation for other
conceivable methods that would use averaging of the reduced problem in order to
avoid keeping track of the fast oscillations. In the method suggested here averaging
is only performed to incorporate the slow forces into the (unaveraged) fast dynamics.
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Numerical tests confirm that the modification to the impulse method suggested
here yields a dramatic improvement. For the modified methods we obtain a bound on
the “global error”—the error after many long steps on a predetermined time interval.
Under the assumption that W (q) is a semipositive definite quadratic form, we prove
second-order accuracy for positions and first-order accuracy for momenta, with error
bounds that depend only on the “reduced” energy 3p™ M ~'p+W (¢) and derivatives of
F(q) and not on derivatives of W(q). The independence of the bounds on derivatives
of W(q) implies that, provided that the reduced energy is kept bounded, it is possible
to apply the method with a given time-step h to faster and faster problems without
impairing the accuracy. A bound for p and ¢ in terms of the energy implies less
relative accuracy for higher frequencies, because, for a given value of energy, the
amplitudes of high frequency modes must get closer to zero as the frequency gets
higher. For frequencies of order O(h~1) only first-order relative accuracy is attained
by the suggested methods, and for frequencies of order O(h~2) or greater no relative
accuracy is attained. Hence for high enough frequencies, the suggested methods do
not resolve their contributions. If such frequencies are present, we might call the
problem “stiff-oscillatory”; the suggested methods are then stiff-oscillatory solvers
in the sense that they only resolve the oscillations that contribute with significant
amplitudes.

Section 3 considers fixed-h stability as ¢ — oo. If Wy, were absent, the method
would reduce to the Stérmer/leapfrog/Verlet method and stability would be ensured
for hw less than 2, where w? is the spectral radius of —F}. Ideally, this same stability
restriction would still suffice with h?W,, present. A stability analysis is presented
for a problem with two degrees of freedom where both Wy, and —F, are symmetric
semipositive definite matrices. We study for various averaging operators how the sta-
bility depends on k€2, hQ)s, and hw where Q3 and Q2 are the eigenvalues of W,,. We
discover that ideal stability is achieved only for rather special averagings, which are
generally not easy to implement. The generally more practical averagings suggested
in the next section all exhibit instabilities in at least some—very narrow—regions
of parameter space even for arbitrarily small hw. The simple impulse method has
an especially large number of instability regions, whereas the method we call “Long-
Average” is unstable in considerably fewer situations. LongAverage has instabilities
when the sum h$2; 4+ h€)y is approximately some positive integer multiple of 27. The
instability is present only if the slow force creates a coupling between the two high
frequencies. A cheaper method we call “ShortAverage” and a method we call “Linear-
Average” suffer for an instability similar to that of LongAverage and are also unstable
when A€y or hy is near some odd multiple of 7. The hapless (unmodified) impulse
method and ShortAverage suffer from the instabilities of Short- and LinearAverage
and are additionally unstable when either h{2; or h{); is near some positive integer
multiple of 27. Figures 1-5 of section 3 display the dangerous regions of parameter
space for hw = % For medium step sizes LongAverage offers an advantage over the
unmodified impulse method. More specifically, LongAverage is stable in the octant of
parameter space defined by h{); < m and hw < 2, whereas the simple impulse method
and the two other proposed averagings are not. (The simple impulse method is unsta-
ble? for hQ); = %w and hw = v/2.) For nonlinear problems, for which the analysis does
not apply, we test numerically how effective these methods are and observe the effect
of nonlinearity in ameliorating the stability problems. Nonlinearity helps to stabilize
but not always enough. However, slight changes in the step size can effect a dramatic

2Choose a; = %oﬂ and 8 = —%oﬂ in section 7 and thus violate condition 2 of Lemma 5.
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improvement. In many practical situations it should be possible to avoid instabilities
through a knowledge of the values of the high frequencies present in the problem.

In molecular dynamics, W(q) corresponds to bonded interactions and possibly
the “short-range parts” of nonbonded interactions. These are by no means quadratic;
however, on a time interval in which the system stays within the basin of a local
minimum of W (g), there is a symplectic change of variables such that W(q) is nearly
quadratic. Moreover, there is empirical evidence [19] of harmonic behavior over time
scales approaching several hundred femtoseconds.

The paper has been organized so that the information required to use the methods
is presented first and the more theoretical material appears toward the end. The
sections are as follows:

2. description of the algorithm,
stability for fixed step size as t — oo,
accuracy,
derivation of the method,
error bounds and convergence, and
stability analysis.

NS ot w

2. The mollified impulse method. In the impulse method and its improve-
ments, there are two natural ways to formulate the algorithm:

1. midpoint version: oscillate half way; kick; oscillate half way.

2. endpoint version: kick half way; oscillate; kick half way.

We focus on the latter, which has two advantages.

1. Computational efficiency. If the endpoint idea is applied recursively, it results
in an algorithm in which all faster forces are being computed whenever slower
forces are computed. In cases where a fast and a slow force are created
artificially by splitting a force of variable speed, only a little extra work
is needed to get both the fast and the slow part of such force. Also in a
parallel message-passing computational environment, the number of messages
communicating positional coordinates is reduced.

2. Convenience. The simplest schemes for attempting to interpolate slow forces
require data only at the two endpoints.

As pointed out in the introduction, the suggested method is obtained from the
simple impulse method, described after equation (1), by replacing the impulses F'(g¢,,)
by Aq(h; ¢,)TF(A(h; ¢,)). By means of a simple example, we explain why we need
to mollify the force by multiplying by A, (h; ¢,)T. The differential equation

2
%q = -0+ F,

where Q > 1, describes the displacement of a unit mass subject to the pull of a
stiff spring held fixed at the other end and to the pull of a constant force F. For
simplicity assume initial values ¢(0) = 0 and p(0) = 1. Numerical integration by the
impulse method with step size h incorporates the slow force F' by adding a term %hF
to the momentum at the beginning and at the end of every step. Suppose though
that h has been chosen so that hQ2 = 27. Between the impulses the reduced problem
(d?/dt?)q = —Q?q is integrated exactly; and because any solution of this problem has
period h = 27/, the result of integrating will be to leave the value of p and ¢ exactly
unchanged. Hence each complete step adds hF to p and leaves ¢ unchanged. This
happens to be correct for ¢ but not at all for p. The correct solution is

(2) p(t) =costQ-1+Q 'sintQ. F
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and has the constant value 1 at integer multiples nh of h. Equation (2) shows that,
in the true dynamics, the effect F is mollified by multiplication by Q=1 sin ¢.

The action of A, (h; ¢,)* on the force can be seen not only as a mollification but
also as a filter damping some components of the force. Different averaging procedures
give rise to different filters. This point of view is taken up in section 5.

In order to find the average A(h;¢q,), we use an interpolation, and there is flex-
ibility in how this is done. Let ¢ be a basis function for interpolation on a mesh
consisting of all integers so that > ¢((t —nh)/h)g, is the interpolant of data g, on
a mesh of spacing h. Consistency requires that

Sds—n) =1,

which, by standard Fourier analysis techniques, can be easily shown to imply

“+oo

(3) ¢(s)ds = 1.

—00

There are three interesting simple choices of ¢:

l’ |8‘ < %;
1. the ShortAverage ¢(s) =14 1, |s| = 3,

0, s > %S

%7 |S| < 1a
2. the LongAverage ¢(s) = ¢ 1, ls| =1,

0, |s| > 1;

— <

3. the LinearAverage ¢(s) = { [1) |51, IjI S }v

The average A(h; q,) is defined in terms of the solution p(¢; qy), q(t; qn), b(t; gn)
of an auxiliary initial value problem

d d 1 d t
ap = _Wq(Q)a %q =M "p, ab =9 <h) q,

with initial conditions p(0) = 0, ¢(0) = gy, b(0) = 0. Note that the initial momentum
is zero and that only fast forces are integrated. We define

A(h; qn) = %(b(+00; qn) — b(—00;qn))

so that
Atisa) =3 [ o (2) a(0) dt= [~ ols)aths) as.

In Short-, Long-, and LinearAverage and in other potentially useful choices, ¢ is an
even function and the average reduces to 2b(+00; y,). If, furthermore, ¢(s) vanishes
for |s| > p, then the average is simply 2b(ph;q,) and the integration of the auxiliary
problem is only required on a bounded ¢-interval. An infinite integration may be pos-
sible if the auxiliary problem can be integrated analytically in closed form. Otherwise,
¢ should be chosen to have bounded support.

The mollified method also requires the Jacobian matrix Ag(h; gn) = 2bg(1ih; gn)
formed by differentiating %b(uh; ¢n) with respect to ¢,. This means that at the same
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time we compute the average we have to compute derivatives of the average. We
emphasize that, at each value of n, the auxiliary integration is only used to compute
the mollified impulse. Once the impulse has been added to the momentum, the
averaged position and its Jacobian matrix are discarded and the main integration is
continued from g¢,, which has not changed at all during the auxiliary integration.

To solve the auxiliary averaging problem, we should use exactly the same method,
analytical or numerical, as that used to integrate the reduced problem (between
evaluations of the slow force). For example, suppose that we are using the Ver-
let /leapfrog/Stormer method with a small time step 6t. Then the calculation of the
average and its Jacobian matrix should be done as follows:

initially:
p:=0; Dq :=0;
q = qn; qq = 1I;
b :=0; by := 0;
t:=0;

step by step:
pi=p— 56tWy(q); Pg = Dq — 56tWaq(q)qq;
b:=b+ 16te(t/h)g; by = by + 26td(t/h)qq;
q:=q+ 6tM~'p; dq = qq + 6tM " py;
t:=1+4 ot;
p=p = 36tWy(q); Pq = Pg — 56tWoq(@)ag;
b:= b+ 35tp(t/h)g; by = bg + 36td(t/h)qq.

We compute step by step until we reach a value of ¢ such that ¢(¢/h) is zero at this
value and remains zero for larger values of t. For example, for LongAverage this means
getting the value b(h + 16t) because ¢(t/h) vanishes only for ¢ > h. (Equivalently,
for the purpose of programming, we can define ¢(1) to be 3 rather than * and stop
at t = h.) Note that in this setting ShortAverage is cheaper than both Long- and
LinearAverage. Note also that we compute derivatives of the numerical solution rather
than numerically solving the variational problem.

Evaluating W;,(q)q, is not as difficult as it might seem. One needs to make fairly
generous use of the chain rule. For example, if we can write a 2-body interaction as

Xl =7,
then we can separately program (i) the first and second derivatives of the scalar
function x and (ii) the gradient and Hessian of ||/> — 7 ||?. For additional details
see [10].

An immediate question of practical (and theoretical) interest is, to what extent
is it necessary to do the averaging integration as prescribed in this paper? Would it
be almost as effective if, for example,

e the step size for the averaging integration was double that used for the reduced
problem?

e the averaging integration used only the fastest part of —W,?

e the averaging integration used a lower order of accuracy?

3. Stability. We study numerical stability for a system of three springs in two-
dimensional physical space: the first spring of stiffness Q2 is fixed at the left at (0,0)
and is attached at the right to a unit mass, the second spring of stiffness % joins the
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first unit mass to a second unit mass, the third spring of stiffness Q32 is attached at
the left to the second unit mass and fixed at the right at (0,3). All three springs have
unit length in the absence of forces. The choice of the stiffness of the slow spring is
such that, when ©; = Q3 = 0, the system has an angular frequency w = 1 leading
to a stability restriction h = hw < 2 for the Verlet method. In molecular dynamics,
typical values for the step size in the Verlet method are those for which h times the
fastest frequency is in the range 1/6 to 2/3 (which corresponds to a step size in the
range 0.25-1 fs).
The problem is nonlinear with four degrees of freedom. However, if the initial
displacements and momenta have no vertical components, then the problem is linear
and only has two degrees of freedom. In this linear case, the only considered until
further notice, stability can be investigated by using the results of section 7. If the
positions of the two masses are expressed as (1 + ¢1,0) and (2 + ¢2,0), the dynamics
are given by (27) with a; = § and 8 = —1. According to Lemma 4, stability of the
numerical solution depends on the three parameters I'y = h€21, h, and 'y = h{)s.
Probably the most useful way to visualize matters is to plot for given values of h
the boundaries of those regions in I'y—I's parameter space for which the numerical
solution is stable.
Stability is determined by the four eigenvalues of the propagation matrix. These
eigenvalues approximate the two frequencies present in the system. For small enough
step sizes h, the eigenvalues are two complex conjugate pairs with unit modulus. As
h increases, the eigenvalues can coalesce and move off the unit circle of the complex
plane. Hence boundaries of stability regions are characterized by eigenvalues hav-
ing multiplicity greater than 1. Three possibilities for instability are identified by
Lemma 5:
type 1 instability is caused by the coalescing of imaginary eigenvalues at a point
# £1 and their subsequent movement off of the unit circle. This can occur
when the sum h€); + h€)s is near some positive integer multiple of 2.

type 2 instability is caused by the coalescing of imaginary eigenvalues at —1. This
can occur when either hQ2; or h€)s is near some odd multiple of .

type 3 instability is caused by the coalescing of imaginary eigenvalues at +1. This
can occur when either h€); or h{2s is near some positive integer multiple of
2.

Boundaries of the instability regions satisfy (29)—(31) of section 7. These equa-
tions can be used to plot instability regions. Our plots are for the typical value h = %

It is shown in section 7 that regions of type-1 instability are present for all four
methods (impulse, LongAverage, ShortAverage, and LinearAverage). However, Long-
Average is the only one of the four not exhibiting other types of instability. Hence it
is attractive as a practical method, and it is interesting to examine its instabilities.
The most important instability region in the I'y—I's plane is the one near the line from
(27,0) to (0,2m). It is the first that we encounter as we increase the step size with
given Qy, 5 and is the widest; it is shown in Figure 1 for I’y > T'y (the region is
symmetric in 'y, I'g). Figures 2 and 3 show closeups from one end of the region near
I'y = 0 where it is a strip of width approximately 0.1 and from the other end near
(m,7) where the strip has a width of around 3 x 10~7. Figure 4 is a three-dimensional
plot of the spectral radius of the propagation matrix.

A three-dimensional plot for the spectral radius of the Short Average propagation
matrix is given in Figure 5. The type-2 instability region shows up well, but the mesh
used for plotting is too coarse to reveal the type-1 instability region.
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3 springs: Filter Long, h=0.5
35 T T T T T

25

1 I L

3 35 4 45 5 5.5 6
Gamma1

Fic. 1. Instability region (strip) of LongAverage method.

3 springs: Filter Long h=0.5

the width of the strip is around 0.01

0.4r

Gamma2
o
w
T

0.2

0.1

0 L L L L L L
5.6 5.65 5.7 5.75 58 5.85 5.9 5.95
Gammal

F1G. 2. Closeup of instability strip of LongAverage at wide end.

Not unexpectedly, one can increase the step size further for LongAverage than for
the other methods before the first instability region is encountered. It is shown in sec-
tion 7 that for the I'; less than 7, the stability threshold for the hw; is uniformly 2. For
the other methods as the T'; approaches 7, the stability threshold for the hw; goes to 0.

How might we, in practice, cope with the possibility of instability? For molecular
dynamics it is worthwhile to customize numerical methods because these simulations
often run for months and because the properties of molecules do not change. Hence
it seems reasonable to determine the high frequencies and then choose h to avoid
regions of stability. We also can and should monitor the simulation to guard against
instabilities. For applications where spectral methods are being used, it follows from
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3 springs: Filter Long, h=0.5
T T

3.1343

Gamma2_max=3.13425225640365
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3.1342 -
the width of the strip is 3e-7 approx.
3.13421 B
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. . . . . . . . . )
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Gammal, width 2e-5

F1G. 3. Closeup of instability strip of LongAverage at narrow end.

3 springs: Filter Long, h=0.5

1.65 4.66

Gammat Gamma2

F1a. 4. Spectral radius of the propagation matriz for LongAverage method.

the analysis of type-1 instability in section 7 that we can easily create a method
without regions of instability.

We supplement the study of the stability regions with numerical experiments to
get some idea of the strength and robustness of the instabilities. In all simulations
in this paper, the reduced problem and the auxiliary problems are integrated by the
leapfrog—Verlet method as described in section 2. We do long-time integrations with
h = % with the impulse method, the (more stable) LongAverage method, and the
(cheaper) ShortAverage method. We select three different sets of stiffnesses chosen
to give each method a chance to display its worst behavior, using parameter values
determined in Propositions 1-3.
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3 springs: h=0.5, Filter Short, M=1.0009, m=1.0000

1.001

1.0008 4

Gamma2 o 2

Gammat

F1G. 5. Spectral radius of the propagation matriz for ShortAverage method.
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F1G. 6. Error in energy as a function of time for LongAverage method, linear problem.

The first set (see Proposition 1) are for
Lo, =T L(1) oy
27 T2 al\2) \2/ >
Lo, 37 L (1" (8m) "
2777 2 4\2 2

with initial horizontal momenta of 0.5 and —0.5 for the first and second particles and
with zero initial potential energy. Figure 6 shows an exponential growth of the error
in energy as a function of time for A = % It also shows the error when h is slightly
reduced leaving 7 and €25 unchanged. Figure 7 shows what happens when we produce
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3 springs along curves #1: h=0.5
10 T T

pO=[cos(a) sin(a) —cos(a) sin(a)]/16 (a=pi/48)

Error in energy
]
b

0 500 1000 1500 2000 2500

F1G. 7. Error in energy for LongAverage method for a slightly nonlinear problem.

3 springs: h=0.5, Filter long along #1 curves
10 T T T T

pO=[cos(a) sin(a) —cos(a) sin(a)]/2 (a=pi/12)

0 500 1000 1500 2000 2500

F1a. 8. Error in energy for LongAverage method for a more nonlinear problem.

slightly two-dimensional movement of the springs by choosing initial velocities having
an angle of 7 /48 with the horizontal axis. This yields a nonlinear problem which still
exhibits exponential energy growth. Notice that with two-dimensional movement the
potential is not defined if a spring length becomes zero, which accounts (we think)
for the differences with one-dimensional movement. Figure 8 shows that stability is
achieved when a more two-dimensional initial condition is imposed by setting the
angle between the horizontal axis and the initial momenta equal to 7/12.

To illustrate instabilities of types 2 and 3, it suffices to use a two-spring problem
obtained from our three-spring problem by setting the stiffness of the third spring
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.\ 2 springs, #2: h=0.5, p0=[1 0 -1 0}/2
10 . r y . r . .

Filter Short

Filter Long i

Error in energy

+

1 s ' L 2 L L s
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

F1G. 9. Error in energy for LongAverage and ShortAverage methods; testing for instability of
type 2.

to be zero. (The stability analysis of section 7 applies if 29 = 0.) For the following
computations we revert to one-dimensional initial conditions.
To get instability of type 2, we choose (see Proposition 2)

1 1\?
O =r—(=]) 73
2 2

Figure 9 shows growth of errors in energy for ShortAverage but not LongAverage.
To get instability of type 3, we choose (see Proposition 3)

2
1 1/1
=2r—— (=) (2m) L
g 1= 4(2)“0

Figure 10 shows the growth of errors in energy for Impulse and for ShortAverage but
not for LinearAverage nor LongAverage.

4. Accuracy. Section 6 gives a detailed error analysis for the case of linear fast
forces, whose results have been summarized in section 1. Here the error analysis
is supplemented with numerical experiments on simple but representative nonlinear
problems. Again we focus on the Impulse and LongAverage methods and to a lesser
extent the ShortAverage method. We use as a test the (nonlinear) two-dimensional
spring system described at the beginning of section 3, but we set the stiffness of the
third spring equal to zero, which amounts to using a system comprising only the first
and second springs.

Figure 11 shows for Impulse the maximum error in position versus §2; for each of
step sizes h = %, h = i, and h = é. (As mentioned previously, typical values for the
Verlet method in molecular dynamics for h times the fastest frequency are from 1/6
to 2/3.) The hard spring has stiffness ranging from 0 to about 1000. Initial conditions
are p = [ 11 -1 1 ] /(21/2) and zero potential energy. The time interval is of
1

length 8. For h = % the maximum error ~ 0.07 occurs at §2; ~ 4, while for h =

this maximum error ~ 0.03 occurs at €2y &~ 8x. This shows a degraded accuracy when
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. 2 springs, #3: h=0.5, p0=[1 0 -1 0]/2

10 T T —T T T T T T
1 "
, —Filter One (Impulse)
10 h

1

I — Filter Short
!

10" ... Filter Linear

i

Error in energy

1 |

1“ p ‘!i|

X Filter Long | R . .
§00 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

L ——

F1c. 10. Error in energy for LongAverage, LinearAverage, ShortAverage, and Impulse methods;
testing for instability of type 3.

- 2 springs Filter One: p0=[1 1 -1 1]'/2/sqrt(2)
10 T T T T

— \
1073 - -h=0.25 « ! 1

Error in position

* ... h=0.125

Koy ¥ * K
X%x*xxxxxxxx%*xx%%x ¥R OKK K
*

*

107 I I I I I I
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Omegal

Fic. 11. Maximum error in position versus Q21 for Impulse method for each of three different
step sizes.

h§)y is near 27 and, furthermore, that the rmazimum position error (over all possible
choices of €2;) exhibits an O(h) behavior. This is an order reduction of one unit from
the expected order 2.

Figure 12 shows the error in position for LongAverage. The time interval is now
longer, of length 16. Halving the step size from % to i reduces the maximum error
from 0.2 to 0.05, so that no order reduction is apparent.

A comparison of the accuracy of the three methods, Impulse, ShortAverage, and
LongAverage, for h = %, h = i is shown in Figure 13. The time interval is again of
length 16.
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2 springs Filter Long: p0=[1 1 -1 1]'/2/sqrt(2)
T

i
O‘

Error in position

0 5 10 15 20 25 30 35
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F1G. 12. Mazimum error in position versus 1 for LongAverage method for each of two different
step sizes.
2 springs: Filters One (Impulse) Long and Short; h=0.5, p0= [1 1 -1 1]"/2/sqrt(2)
\
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2 springs: Filters One (Impulse) Long and Short; h=0.25, p0 =[1 1 -1 1]/2/sqrt(2)
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o
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10°

F1G. 13. Mazimum error in position versus 1 for LongAwverage, ShortAverage, and Impulse
methods for each of two different step sizes.

5. A derivation of the method. We do the derivation in two stages: first,
we narrow the set of possibilities by requiring that the scheme be symplectic in the
case where the slow force is also a gradient F' = —U,; second, we aim for the greatest
possible accuracy.

The basic requirement of a long-time-step method is to evaluate F' sparingly, so
we want to make the best use of each such value. Instead of merely using p, =
p,, +hF(q,), we seek something of the form

P =, + hmollify(h; gn, F(A(h; qn))),
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where A(h; ¢,,) represents an averaging and where mollify produces a softening of the
force that more accurately represents the integration of the force into the momentum;
cf. (2). These averaging and softening operations are allowed to involve considerable
work if the slow forces are expensive to compute. The substep (p,,qn) — (D}, qn) is
by itself symplectic if the complete mollified force has a symmetric Jacobian matrix,
which is equivalent to it being a gradient. The only obvious way of achieving this,
assuming that F' = —Uy, is by having

Py =Pn = h(U(A(h: 4)))q-

If we generalize this to nonconservative forces, we have the algorithm that follows:
We begin a step with g, p,, and g, = F(A(h; g,)) given to us. Then we compute

h
Py = ot 5 A(hign) gn,
qn+1 : An
(@) [ p’};l ] = h-flow of reduced problem applied to { e } ,
In+1 = F(AMR; gni1)),
Prit = Puyr Al Gnt1) " Gn1.

The integration of the reduced problem is assumed to be done either exactly or by a
symplectic numerical method.

In the belief that the mollification A, (h; gn+1)T is more critical than the aver-
aging (for instance averaging does not help if the force is constant), we proceed by
determining the best choice for Ay (h; gnt1)T. The aim is to incorporate the available
force values g, not as impulses hé(t — nh)g, but in a more continuous fashion. Ide-
ally we would generate continuous slow forcing functions by interpolation using basis
functions ¢((t — nh)/h), meaning that we would integrate the system

2 X (t—nh
M@q:_Wq(Q)‘*‘ Z ¢<h) In>

n=—oo

where g, = F(q(nh)). This is, however, hopelessly implicit and costly in computer
time. We derive a much more practical algorithm that involves the integration at
every step of an instance of the following closely related Hamiltonian system for the
extended set of variables (p, q,b, g):

d

t
%p =-Wy(g) +¢ (h) g,

d
—qg=M"
i 2

d t
dtb_¢(h> q,
d

Za=0
at?
Note that in the first equation g contributes to increasing p in a continuous fashion.

On the other hand, in any time interval, the increase in b (the variable canonically
conjugate to g) is an average of ¢. The time-dependent Hamiltonian function is

1 t
H(p,q.,b,g,t) = ngM "+ W(g) - ¢ (h) g*q.
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We assume the use of the same symplectic integrator for this problem® as for the
reduced problem (d/dt)p = —Wy(q), (d/dt)g = M~'p. Let the solution defined by
the integrator, with initial values p, ¢q, g, b, be denoted by

P(t;p,q.9)
Qt;p.q.9)
. t=0,+h,+2h,...,
b+ B(t;q,p,9)
g

whose form implies some very mild assumptions on the integrator. For negative values
of t one uses the inverse of the positive flow, which for a reflexive numerical integrator
means using the given method with negative h (but for a nonreflexive numerical
integrator means using the adjoint method with negative h).

With adequate notation now in place, we present the derivation of the mollified
force. Suppose that we have just computed p, and g,, and we wish to incorporate
¢(=21) g, into the solution with minimal loss of accuracy. Assume that ¢(s) = 0 for
s < —p and s > v for some positive integers i, v. The best we can imagine using for
Py s
(5) P(_Vh; Z(Vh+ﬂh§Z(_uh§ Z;’O)agn) O)a

where Z = [PT,QT]T, 2, = [(p;)T,¢X]T, etc. Note that in (5) one integrates forward
with the force g, incorporated and backward without g,. The effect of the backward
integrations is compensated when flowing forward (rotating) with the reduced flow;
hence using (5) for p;l in a kick-rotate-kick algorithm is equivalent to integrating with
the term ¢((t — t,)/h)gn added to the fast forces.

Therefore, the goal is
hAq(h; @) " gn
~ P(fl/h; Z(Vh + .U'h; Z(flufh; Zy s 0)7 gn)a 0) o P(fl/h; Z(Vh + :U‘h; Z(*Nhé Zy s O)a 0)7 0)7
(6)
where the last term is simply a rewriting of p,,. We want this to be independent of
P57, so we approximate z by [¢X,0T]T in (6). Then to obtain the form of the LHS of
(6), we linearize with respect to g,, obtaining

hAq(h§ Qn)Tgn = Pz(fth Z(Vh)a 0) : Zg(Vh + ph; Z(fﬂh): 0) “Gn,

where Z(t) = Z(t;qn,0,0). The possibility of satisfying this equality is justified by
the lemma that follows, which directs us to choose

A(h:q) = - (B(vh; q,0,0) — B(—ph; q,0,0)).

1
h
LEMMA 1. We have that
P,(=vh; Z(vh),0) - Z,(vh + ph; Z(—ph),0) = By(vh; q,0,0)T — By(—uh;q,0,0)7.

Proof. Because Z(vh + ph; Z(—uh;q,0,9),9) = Z(vh;q,0,9),

() Z.(vh+ phi Z(—ah),0) - Zy(—uh) + Z,(vh + ph; Z(—uh),0) = Z,(vh).

3 A numerical integrator defined for autonomous Hamiltonian systems is extended in a natural
way to nonautonomous Hamiltonian systems by applying it to an extended Hamiltonian system in
which ¢ is treated as an additional position variable; cf. [13].
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Similarly Z(vh + ph; Z(—ph; 2,0),0) = Z(vh; z,0) implies
(8) Z:(vh + ph; Z(—ph),0) - Z.(—ph) = Z.(vh),
and Z(—vh; Z(vh;z,0),0) = z implies
(9) Z.(—vh; Z(vh),0) - Z,(vh) = 1.
Putting together (7), (8), and (9), we have

P.(—vh; Z(vh),0) - Zg(vh + ph; Z(—ph),0)
=[1 0](Z:(vh) ' Zg(vh) — Z.(—ph) " Zg(—puh)).

Because the flow

Z(t; 2, 9)
b+ B(t; z,9)
g
is symplectic,
Z, 0 Z, 177" 0 0 Z, 0 Z, JN 00
B. I B, 0 0 —-TI B. I By, |=| 0 0 —I
0 0 I 0 I 0 0 0 I 0 I 0

=

From the (1, 1)-block entry of this equation, we get

zYgtlz, =71,
and from the (1, 3)-block entry we get

ZrJ 'z, - Bl =0

whence
J 'z 'z, =B}
and
[I 0]z 'Zy=8B]. O

We have, in section 2, given the details of the mollified impulse method for the
leapfrog integrator. In the remainder of this section we discuss two other cases:
1. analytical integration, for the special case of linear fast forces, and
2. integration by Rowlands’ method [11].
The first of these provided the insights that originally motivated this method and is
of practical interest if spectral methods can be used. The second of these is not only a
particularly efficient numerical integrator, but it also illustrates that it is not always
obvious how to do the averaging A without the systematic construction that has just
been given.
For analytical integration we have, of course,

Alh;q) = i/yh ) (2) Q(t; q,0)dt.

—ph
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In the case of linear fast forces, W (q) is quadratic %qTAq + Bq + c¢. If we assume
also that W(q) has zero as its minimum value, then A = Q2 with Q2 symmetric
semipositive definite, and it can be shown that there exists a vector ¢* such that

W(q) = %(q )" (g —q").

Note that ¢* is not normally given explicitly in the natural formulation of the problem
and is generally underdetermined. The equations of motion are therefore

d d
—p=—-0%(q—q" )+ F —q=M"1p.
i (a=q¢")+Fla), Ha P

For theoretical purposes (at least) it is much more convenient if we work with the
symplectically transformed system

_ _ d
—Vq+F(q), —q=n.

(10) i

at? =

where p = M~1/2p, g = MY/?(q—q*), Q> = M1/2Q2M~Y/2 and F(q) = M~'/2F(¢*+
M~1/2g). In further discussion of the linear case, we work with the transformed sys-
tem and omit the bars from our notation. We also assume when convenient that
the positions and momenta have been orthogonally (and hence symplectically) trans-
formed so that 2 is a nonnegative diagonal matrix. For the transformed system (10)
(with the bars now omitted), the flow is governed by

; 0 —0? B cos t£) —Qsin ¢
P I 0 | Q7 lsintQ costf)
This formula can be used for the full system

(11) —p=-0%¢+F(q), —q=p
to express its solution as

{ p(t) } _ { cos(t —nh)Q  —Qsin(t —nh)Q } { p(nh) }
(12) @ i sin(t —nh)Q cos(t —nh)Q)
[ ] Te 0 | Pt

From this we see that
Q(t;q,0) = costf - g
and
A(h; q) = @q,

where ® is the matrix

1 [T [t Heo
o= E/ 0] <h) costddt = (s) cos sh§) ds.

—0oQ — 00

For the methods studied, the “filters” ® are as follows:
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Impulse P =1,
sin %Q
ShortAverage = &g
2
inhQ sinZQ p
LongAverage o= % = H%lé cos 59,
2
. sin 20
LinearAverage d = -
20
2

We conclude this section with a brief look at the application of Rowlands’ method [11,
10] to

al )= [ sl

The momentum update has the form

R R G e il RN IR

Taking into account the initialization g := 0, the equation for b becomes

5t [t 5t2
a rather unexpected averaging of the ¢ values!

6. Error bounds and convergence. This section demonstrates second-order
accuracy for positions and first-order accuracy for momenta—uniform with respect to
the fast force—for the mollified impulse method applied to the case, equation (11),
of linear fast forces. Also given are examples of the order reduction of the impulse
method and of why we need not only to mollify the slow force but also to average the
position values at which this force is evaluated.

The error analysis assumes that in the Euclidean norm F(¢q) has a Lipschitz
constant Lq, that F'(q) is bounded by Lo, and that Fi(¢q) has a Lipschitz constant L.
We assume (3), that ¢(s) vanishes for |s| > 1 and that ¢(—s) = ¢(s). The analysis
also requires bounds on ¢(s). For simplicity we assume

1
; 1
(13) [ Iseteis < .

a bound which is satisfied by all three basis functions that have been explicitly men-
tioned. Larger bounds on ¢(s) lead merely to larger bounds on the error. The bound
we obtain is in terms of the “reduced energy”

H = Og%%)r(m (;p(t)Tp(t) + ;(I(t)TQQq(t)) )

THEOREM 1. Let t = nh. Under the preceding hypotheses, the global error of the
mollified methods satisfies

1 13 - 1.,/1 4 .
(14)  |lgn — q(nh)|| < h?cosh(tLy) - <2L0 + ELlHl/Qt + 5152 (6L1L0 + 3L2H>>



950 B. GARCIA-ARCHILLA, J. M. SANZ-SERNA, AND R. D. SKEEL

and

1 .
”pn —p(nh)H <h <2L0 + (Qt + h)L1H1/2>

1 13 . 1,/1 4
+ h? Lyt cosh(tLy) - (2L0 + EL1Hl/2t + itz <6L1L0 + 3L2H>>

1 4
(15) + h3t <6L1L0 + 3L2H> )

Before we prove the theorem, we discuss some counterexamples.

First we note that the example around equation (2) shows that for the impulse
method it is not possible to bound ||p, —p(¢,)|| by Ch with the constant C' depending
on fI, Lo, Ly, Ly, and t as in (15). Hence the impulse method undergoes an order
reduction in p from 2 to 0.

Next we consider the three-spring system of section 3 with one-dimensional initial
conditions and Q2 = 0. We denote by P and p the (horizontal) momenta of the first
and second masses and by 1+ @ and 2 + ¢ the corresponding abscissae. As 21 — oo,
the frequencies in the system are

1 1 V2 1
1 Q :Q — — Q_:i —_ .
(16) N 1+491+o(9%), : +o(9%)

As h is reduced in the numerical methods, we increase {21 so as to keep
(17) hQy = 2m.

Assume that we integrate either with the impulse method or with a method that
is mollified with the Short, Long, or Linear filters but where no average is done to
evaluate the force (i.e., with a method using the force A,(h;q,)T F(g,)). In this
setting, it is easy to check the following points.

(i) The numerical value of @,, does not change along the integration, i.e., @, =

Qo-
(ii) The variables x,, = @n — ¢n and p,, obey the equations

h
Py =p, — TXm

Xnt+1 = Xn + hpyh s

Pn+1 = Prf - ZXn+1-

These coincide with the Verlet discretization of the system p = —%X, X=Dp
(a single spring with angular frequency v/2/2).
We choose the initial condition so that the solution is the eigenmode

P(t) = —sin Q+t,

1 :
p(t) = 2{23_7—1 S1n Qth,
1
Q) = o, cos Q4 t,
1
q(t) = ———>5 - COS Q+t

0, (207 — 1)
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Note that the energy in this solution remains bounded as €23 — oco. In view of (17)
and (16), in the true solution ¢(t) = O(h?®). However for the numerical solution,
(i)—(ii) above and the convergence of the Verlet method imply

gn = Qn + Xn
= Q(0) + x(tn) + O(h®)

= Q(0) + x(0) cos ?tn +0(h?)

1 V2 2y _
= o (1 — cos 2tn) + O(h*) = O(h).

Hence ¢, is an error by an O(h) amount. We conclude that the impulse method
undergoes an order reduction in ¢ from 2 to 1. Furthermore, mollification without
averaging inside F' is not sufficient to ensure an O(h?) bound like (14).

A similar counterexample, involving the same spring system, can be constructed
to show that the O(h) bound in (15) cannot be improved to become O(h?).

We now prove Theorem 1. We first need a discrete Gronwall lemma appropriate
for special second-order ordinary differential equations.

LEMMA 2. Let

n—1
(18) E,<Dp+nY (n—jE;, n=12,....
j=1
Then
(19) E?zSDn+nZ p—p-1 Dja
j=1
where
=1+ L +4/n+ L
P = 2"7 n 477 .
Moreover,
< . ;.
E,, < cosh(ny/n) max D;

Proof. The inequality (18) is majorized by the solution of

n—1

En =D, +U2(n*j)EJ"

j=1
A lengthy calculation shows the solution to be the RHS of inequality (19). It can be
checked fairly easily by induction using the fact that (p — 1)? = np. We have

1 1
p<1+nt2 4 SNt §n3/2 < exp(n'/?).
Let D = maxy Di. Then by computing the sum on the RHS of (19) and using
(p—1)% = np, we get

- pn+p1—nD - pn—1/2+p1/2—n
- p+1 - 2

—cosh((n;)logp>-D§cosh<<n;>7]1/2>-D. a

E, D
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Now we are equipped to obtain a bound on the global error in terms of quadrature
error.
LEMMA 3. The global error satisfies

lgn — g(nh)|| < cosh(Lyinh) - max |[og;|
1<j<n

and

[pn — p(nh)|| < Linhcosh(Linh) - max [[og;| + [[opnll
1<j<n

where op n, 0g,n are the quadrature errors

R ey g YL R

Ogn

with

n— cos hf) —sin h§
T Q7 lsinhQ)  coshf)

and 1; =1 except that 19 = 1,, = %
Proof. From (12) the analytical solution satisfies

ngg } _ { p((n -~ R) } +/(:h1>h { inig?ﬂ; ?%Q }F(q(t))dt.

The numerical solution defined by (4) satisfies

Pn | _ R Pn-1 +R %(I)F((I)Qn—l) + [ %(I)F((I)Qn) )
dn qn—1 0 0

Letting 6, = pn — p(nh), en = qn — q(nh), and A,, = F(®q,) — F(®g(nh)), we have

) 61 h ) h[ @
2 no| = n = A, 4= A, +T,
(20) [ } R_€n1}+2R{O} 1+2_ } +

where

F(®q(nh))

Tn = —R
2 L
nh r
cos(nh — t)Q2
B /nh—h | Q7 sin(nh —t)Q ] F(q(t))dt.

Summing (20) yields

3
n =0

where

n
o' s
op = { pn } = E R" ;.

Jj=1
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The equation for €, n > 1, is

n—1
en=nh Z Q7 'sin(n — §)hQ - PA; + 0y 0,
j=1
S0
n—1
lenll < llogull +h*La Y (n— 5)lles1l
j=1

where we have used (13) to conclude that ||®|| < 1. Applying Lemma 2 leads to the
upper bound given for ||¢, — ¢(nh)||. The equation for é,, n > 1, is

b =h> 1jcos(n — j)hQ- QA; + opp,
j=1
SO

n
6l < L2 DNl + llopall. O
Jj=1
T . 1 2
|”, we can write 0,, = o} — 02, where

Proof of Theorem 1. Letting o,, = [O'g’n, U;Fm

j=0 _
with Fj = F(®q(jh)) and
nh .
2 _ cos(nh —t)Q
on = /0 [ Q tsin(nh —)Q F(q(t))dt.

Because of our assumption that ¢(s) vanishes for |s| > 1 and that Zji w O(s—7) =1,
we can write

= [ [ ot 2o | oo (57 ran

= XH:R’H /Onh { Q_C(l)ssgfl?]; t—)%Q } ¢ <thjh> Fla(t)dt

=0
" _. DR cos () t .

= ZR” J/ X [ a0 }qﬁ <h> F(q(jh +t))dt.
=0 =

By comparison

n (n—4)h
1 n—j cos tf) t .
U”_Z oR /j [ leint9}¢<h Fjdt
J:

h

R” ’ 0 ! Fydt " 0 ! F,dt
+ h —0 tsintQ ¢ h)° + o —0 tsintQ ¢ n)

where we have used the fact that ffh sint§) - ¢(t/h)dt = 0. Hence
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where

n ) (n—3)h
s [ Lo (1) 5 o

=0 —jh
and
bt T= [0 o () e
(22) <| 1] 5

It remains to bound o2, so we write

t-ge (5[ 4])

where

and
(n—=j)h t
5 sin 50 . o
To bound 77, we write

h

¢
q(jh +t) — q(jh) = d)( ) (1 — costQ)dt - q(jh) + /Op(jh+7)dr

/
/ < )Sl §QSIHtht Qq(jh) + /Otp(thrr)dT,

a9)

Q‘r

:\»—‘ b‘\r—‘

from which we get

. . h N
Jatn+0) ~ 2atin] < (5 +1e) £

h
o 2 t h 5
i< [ e ()]0 (5 + 1)

(24) <1 { 7 } h2L HY?,

and

It remains to bound TSJ. We have
F(q(jh+1t)) = F; + Fy j(q(jh +t) — ®q(jh)) + E;(1),
where

Fy; = Fy(®q(jh))
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and

1 . .
IE; (DI < 5 Lallg(ih + t) — 2q(ih)]*

1 h z.
Lo = wt) H.
2 2(2+|>

q(jh +1t) = costQ - q(jh) + Q sintQ - p(jh) + A (1)

IN

Also, we have that

where
t
Aj(t) = / Q tsin(t — s)Q- F(q(jh + s))ds.
0
This last quantity satisfies

1
1A;@®) < itgLo-

Therefore,
6 _ 7 8 9
Tp,j = TPJ + Tp,j + Tp7j7
where
(n=5)h t
di=Fu | () (cos 02 — @)dt - q(jh).
AV
. (n—j)h t . .
S = Fy; /jh 1) (h) Q7 " sintQdt - p(jh),
and

o /(nj)h é (2) (Fy ;0 (t) + E;(t)) dt.

—jh

The last of these admits the bound

9 s (M7 1, 1 (h 2
gl < i [ oo  gs7aato+ y2a (5 +1sl) #) as

—J
1 4 .
< k%1, <6L1L0 + 3L2H) .

For 0 < j < n we have Tgyj = 0 because it is the integral from —h to +h of an odd
function, and otherwise we have

1 N
75511 < 5h2L1H1/2.

Finally,

bt 11
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and similarly for the integral from —hA to 0. This implies 7' = 0. Combining (21),
(22), (23), and (24) yields

o< [a Jsme s (] 2 o W*[||£C?2§:<5])§L§;LQTGT! ])

J=

| =

11]h 2 1/2
<{h}2L0+[éh]thLH +Z ) [
(25)
Combining the bounds for 7, p s 5 ;» and T ; gives
1 4 .
(26) Irill < @ 1L 4 10 (L Laka+ Lt )

The theorem follows from (25), (26), and Lemma 3 using the fact that >-7_(n—j)1; =

1,2
Sn°. 0

7. Stability analysis. Here we provide the details that support the assertions
in section 3.
We consider the two-degree-of-freedom linear problem

d
(27) P =" Uua, La=p,
where, without loss of generality, Q? = diag(Q3?,Q3) and
_ | B
U= % 0

is assumed to be a constant symmetric semipositive definite matrix. To analyze
stability, we need the characteristic polynomial of the matrix that propagates the
solution and also the errors.

LEMMA 4. The eigenvalues A of the error propagation matriz for integrator (4)
applied to (27) satisfy

(28) M 25X+ (24 82— D)X2 —251 41 =0,
where S and D are given by

S =cosI'y —e1 + cosTy — o,
D = (cosTy — &1 —cosTy + e2)? + 460%¢ 169

with
1
g = 5hzozinb(ri)?F;lsmri,

Fi = hQi, and 0 = B/‘/ozlag.
Proof. One step of the mollified impulse method (4) is given by

(]
an |’

I -hovy,® cosh)  —QsinhQ ][ T —LoU,®
0 1 Q=1 sin hQ cos h§) 0 1 )

Pn+1
dn+1

where
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The error propagation matrix A is similar to

I —h2<I>qu(I> } { cos h? —h{2sin h§2

I
A= 0 I (hQ)~! sin hQ2 cos hQ

The lemma follows from a calculation of det(AI — A’) using ® = diag(®(T"y), P(T'2)),
cos h) = diag(cosI'q, cosT's), and sin h{) = diag(sin 'y, sin's). d
Recall that the filters are

1, Impulse,
O(I') = %7 ShortAverage,
S LongAverage.

Next we obtain necessary conditions for stability.
LEMMA 5. The roots of (28) are less than or equal to one in modulus if and only

if
1. D>0,
2. 5> —2—1—@, and
3. §<2—-+D.

Conditions 2 and 3 can be combined as |S| < 2 —+/D.

Proof. Assume that the roots of (28) are less than or equal to one in modulus.
Because their product is one, they must all be equal to one in modulus. Hence it is
necessary that the quartic of (28) be factorizable as

MW+ ad+ DN +bA+ 1) =2+ (a+ )X+ (ab+ 2N + (a +b)A+1,

where —2 < a,b < 2. Comparing this quartic with that of (28), we note that a and b
must be the roots of 22 +2Sxz + 52 — D =0, so

a,b=—-S+VD.

Hence it is necessary that D > 0. Additionally, it is necessary that —2 < —S++/D <

2. This proves necessity of conditions 1-3; sufficiency is proved by a straightforward

reversal of the preceding arguments. 0

For Uy, = 0 the roots of (28) are all equal to one in modulus. What happens

as Ugq grows is that roots coalesce and then bifurcate off the unit circle. Where this

happens determines which of conditions 1-3 is violated:

type 1 instability occurs if D < 0 and is associated with the coalescing of imaginary
eigenvalues at an imaginary point. The boundary of a type-1 instability region
for fixed h is contained in the set of (I'y,T'2) which satisfy

(29) D =0.

type 2 instability occurs in regions where D > 0 if S — /D < —2. It is associated
with the coalescing of imaginary eigenvalues at —1. Its boundary is contained
in the set of (T'1,T's) which satisfies

(30) (14 cosT'y —&1)(1 +cosTy — €3) = O2%¢165.

type 3 instability occurs in regions where D > 0 if S++/D > 2. It is associated with
the coalescing of imaginary eigenvalues at +1. Its boundary is contained in
the set of (I'1,['y) which satisfy

(31) (1 —cosT'y +e1)(1 —cosTy +e2) = 0%c1e5.
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The proposition that follows is the result of an attempt to find the worst possible
case of type-1 instability. In the interests of brevity we do not prove that it is the
worst case. First a lemma is needed.

LEMMA 6. If D <0, then

a= i (\/(2+S)2—D+\/(2—S)2—D) > 1,
and the largest root of the LHS of (28) has modulus

a++va?—1.

If |S| < 2, then the modulus is

|D| D]
1 .
Vo T\ e

Proof. We begin by noting that

1
a>2(2+8+2=-8) > 1.

With p = a+ va? — 1 and

a:%<\/(2+S)2—D—\/(2—S)2—D),

we can by direct calculation show that the LHS of (28) factors as
(N =apA +p )N —ap A+ p77).

(It helps to use the fact that p+ p~! = 2a.) Because p > 1, the root A of maximum
modulus is one of

Now

o = ISl 25420425 -2
T da 2+8]+12-9 7

so A above has modulus p, which proves the first part of the lemma. If |S| < 2, then

015 gy +O ((2 D|S|>>

from which the second part follows. 0O -
PROPOSITION 1. LetT' > 0 and I' > 0 be such that I + T is an integer multiple
of 2. Then let

1
r,=T- 5h2al<1>(1“)2r*1,

_ 1 _
Iy =T-— 5fﬂoéch(r)?r*l.
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If T is not an integer multiple of m, then the spectral radius of the error propagation
matrix is

1+ %h2\ﬁ\\/¢>(F)2F—1@(f)2f—1 +O(h%).
Proof. Letting A = $h2a1®(I')?T'!, we have
=T —A,
£ = %hzalcp(F)QF*1 sinT + O(h?)
= AsinI' + O(hY),

cosI'y =cosIl'cos A +sinI'sin A
=cosT'+ AsinT' + O(h?),

SO

cosTy —e; = cosT" + O(h?).
Similarly

€9 = %fﬂa@(f)?f*l sinT + O(h?)

and

cosI'y — g5 = cosT' + O(h*).
Therefore,

S = cosT 4 cosT + O(h*)
=2cosT + O(h*)
and
D= 492%h2a1<1>(F)2F’1 sinT"- %h%@@(f‘)zf"l sinT + O(h%)
= —h4p%20(0)?T ()T Lsin? T + O(h°).

The result follows from Lemma 6. a0

The proposition says that for all integers n and for all I" that are not integer
multiples of m we must have

o(I)®(2rn—T) =0
to avoid type-1 instability. This can be achieved by constructing ®(I") to vanish on
[, 2] U [3m, 4] U - - -. If we satisfy this, then clearly D > 0 and type-1 instability is
entirely avoided.

That LongAverage suffers from type-1 instability can be seen by choosing I' = %’ﬂ'
and I' = %ﬂ', for which the stability matrix has spectral radius

81
128273

The next proposition is the result of an attempt to find the worst possible case
of type-2 instability. First a lemma is needed.

Ry el
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LEMMA 7. If D > 0 but |S| > 2 — /D, then the largest root of the LHS of (28)

has modulus
1 / 1
1+ =6 6+ =62
+ 5 + + 1

§=18—(2— VD).

Proof. The LHS of (28) factors as

where

(A2 = (S+VD)A+1)(A\2 = (S — VD)X +1).
The root A of maximum modulus is a root of
A2 — (S +sign(S)VD)A 4+ 1 = X2 —sign(S)(2 + &)\ + 1,

from which the lemma follows. 0
PROPOSITION 2. Let

1
r=I- 5h2a1<1>(r)2r*1,

where ' is an odd integer multiple of 7, and let I's not be an odd integer multiple of
w. Then the spectral radius of the error propagation matriz is

1
1+ 5fﬂoqq)(r)Qr*l + O(h*).

Proof. Letting A = 1h%a;®(I')?T' !, we have

Iy =T —A,
g1 = (A +O(h*))sin(T — A)
= A+ O(h%),

1
cosTy = -1+ §A2 + O(h®),

SO
1
cosTy —e; =—1— §A2 + O(h®).
Therefore
1
S = COSFQ -1 — &9 — §A2 + O(h6>,
1
|S] =1—cosTy +e2 + §A2 + O(h®),
1 2
D= (cos Ty — ey — (—1 - §A2 + O(hﬁ))> +O(h%),
and

1
VD =cosTy —ey+ 1+ §A2 + O(h").

The result follows from Lemma 7. 0
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To avoid type-2 instability, it is necessary to have ®(I') vanish at odd integer
multiples of 7.

The next proposition is the result of an attempt to find the worst possible case
of type-3 instability.

PROPOSITION 3. Let

1
r=I- 5hQal<1>(r)2r—1,

where I' is a positive even integer multiple of ©, and let I's not be an even integer
multiple of w. Then the spectral radius of the error propagation matriz is

1+ %iﬂa@(r)?r*l + O(h%).

Proof. The proof is very similar to that of Proposition 2. 0

To avoid type-3 instability, it is necessary to have ®(I') vanish at positive even
integer multiples of .

Next we show that LongAverage does not possess instabilities of types 2 and 3.

PROPOSITION 4. LongAverage possesses neither type-2 nor type-3 instability pro-
vided that hw < 2 where w? is the spectral radius of Uy,.

First we prove a lemma.

LEMMA 8.

sinT’
r

sinI’
r

3 3
’ ) zz(cosl“—l).

1
§§(COSF+1) and (

Proof. Let ¢ = %F and this becomes

9 . 2
sin 24 (31n1/)> <1, and
2¢ ¥
1 sin 29
2. ——y? < 2.
21/) ST cos” 1
The first is clearly true. The second is true for ¢ < 7/2 because the RHS > 0 and
true for ¢ > 7/2 because the LHS < —1. a

Proof of Proposition 4. Assume hw < 2. The spectral radius of Uy, is

w2:a1+a2+ a1 — Qo 2+52
2 2 ’

so a; < w? < 4h~? and

B% < (4% —aq)(4h™% — ag).
The upper bound on «; implies that ¢; lies in the closed interval from 0 to 2(sin I'; /T';)3.

Combining this with Lemma 7, we conclude

1
(32) i(cosfi —1) <e <cosT; +1.
Assume D > 0. We need to show /D < 2 — |S|, for which it is enough to show
1. |81 <2,
2. D<(2-9)2,

3. D<(2+9)2
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Substitute into the definitions of S and D given in Lemma 4 and we are left with
having to show

1. —2<cosT'y —e; +cosT'y —ey < 2,

2. 0%e169 < (1 —cosTy +¢1)(1 — cosTy + €3),

3. 0%e169 < (1 +cosTy —e1)(1 + cosy — &3).
To show item 1, it is enough to show

—1<cosl'; —¢g; <1,

which follows from (32). To show item 2, it is enough to show
le;] <1 —cosT; + ¢,

for which we need show only that
—g; <1—cosT; + ¢,

which again follows from (32). To show item 3, we note that

Do on — h43% [sinlysinly >
2Ty [T,
<|(s_ h2a sinIy 3 9_ h2as sinI'y 3
- 2 I 2 Iy ’

and hence it suffices to show

. 3
sinT’;
2( Fi Z) — &

This is equivalent to showing that

sinT;\?
2< T z) <1+4cosl}y

%

<1+cosl; —¢;.

and

sinl’;

3
(h2a; —2) ( ) <1+ cosly.
Both of these follow from Lemma 8, using the fact that |h2a; — 2| < 2. a
It follows from the analyses given that if we are using spectral methods, we can
easily create a perfect filter—one which vanishes or is very small for h{2 on [r, 27] U
[37,47w] U ---. The corresponding basis function is a multiple of its Fourier cosine
transform and unfortunately probably does not have compact support.

%
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