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We study the growth with time of (the coefficients of the asymptotic expansion of) the error 
in the numerical integration with linear multistep methods of periodic solutions of systems 
of ordinary differential equations. Particular attention is devoted to reversible systems. It 
turns out that symmetric linear multistep methods cannot be recommended in spite of the 
fact that they mimic the reversibility of the true flow. For reversible second-order systems, 
linear multistep methods without parasitic double roots are useful. 

1. Introduction 

This paper is devoted to the analysis of the error growth in the numerical integration by 
linear multistep methods (LMMs) of periodic orbits of systems of differential equations. 
Our motivation has been twofold. First, we devoted a previous paper (Cano & Sanz-Serna 
(1995)) to the investigation of the same question in the case of one-step methods and we 
wished to complete our earlier study by also treating LMMs. Furthermore we had another, 
deeper aim in mind. There has been much recent interest in geometric integrators (Sanz- 
Serna (1997)), i.e., in integrators that mimic some of the geometric properties in phase 
space of the system being solved. Since, due to the need to store past solution values, 
multistep methods naturally live in a phase space different from the phase space of the 
underlying system of differential equations, LMMs have not played an important role in 
geometric integration. In particular little is known about the application of multistep meth- 
ods to Hamiltonian or reversible problems. As shown in Cano & Sanz-Serna (1995) (see 
also Calvo & Hairer (1995), Calvo & Sanz-Serna (1993), Estep & Stuart (1995), Frutos & 
Sanz-Serna (1997), Hairer & Stoffer (1997), Portillo & Sanz-Serna (1995), Stoffer (1995)), 
the use of time-reversible one-step methods for reversible systems or of symplectic one- 
step methods for Hamiltonian systems leads to an error growth in periodic orbits that is 
smaller than the one found with ‘general’ methods. Therefore we were interested in iden- 
tifying properties of an LMM that lead to slow error growth for periodic orbits; by doing 
so we expected to identify LMMs suitable for ‘geometric integration’. 

Symmetric LMMs appear to be good candidates to integrate reversible systems; as first 
noted by Stoffer (1988), the time-symmetry of linear symmetric methods implies a re- 
versible behaviour of the numerical solution. Symmetric methods have also been suggested 
in connection with Hamiltonian problems, see e.g. Eirola & Sanz-Serna (1991). Quinlan & 
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Tremaine (1990) have derived symmetric linear multistep methods for second-order equa- 
tions (LMM2s) and found that, for Kepler’s problem, the error growth is linear. In spite of 
the foregoing considerations, the following conclusions emerge from the present paper. (i) 
Symmetric LMMs cannot be recommended for the integration of reversible or Hamiltonian 
problems, because the parasitic roots typically lead to numerical errors that grow at a rate 
that is faster than the ‘natural’ rate at which the perturbations of the differential equation 
itself would grow. (ii) Symmetric LMM2s are useful for reversible problems, provided that 
the first characteristic polynomial has no double root of unit modulus # 1. 

The remainder of the paper is divided into three sections, devoted respectively to strongly 
stable LMMs, weakly stable LMMs, and LMM2s. As distinct from Cano & Sanz-Serna 
(1995), for simplicity, we only consider the case of constant stepsizes and we do not study 
explicitly the Hamiltonian case. Of course our study of reversible problems is relevant to 
Hamiltonian systems because many Hamiltonian systems found in practice are also re- 
versible. 

2. Strongly stable methods 

2.1 Preliminaries 

We consider an initial value problem 

j, = f (u>, (1) 

r(to> = a9 (2) 

where, for simplicity, we assume that f is smooth (C”) in the whole of RD. All the results 
in this paper can be easily adapted to the case where f is only defined in the domain 
J2 c RD and/or only of class Ck. Also for simplicity, we assume that all solutions of (1) 
are defined for each real t. 

We study LMMs of the form 

k 

x W Yn+l n =0, l,..., 
I=0 I=0 

(3) 

where yn is the numerical solution 
Introducing the first and second 

at time tn = to + nh, h > 0. 
characteristic polynomi als 

P(X) = akxk + a&lx 

k-l 
+ l l l + Q Q ,  

k 
dx) =Bkx +Bk-lx 

k-l 
+***+/.&-J, 

and the shift operator E, (3) becomes 

We assume throughout that q!k # 0, and that the method is irreducible (i.e. p and 0 have no 
common factors) and consistent (i.e. p( 1) = 0, p’( 1) = a(l)). Furthermore we normalize 
the method coefficients so that 0 (1) = 1. 

For a method of order Y, the truncation error 

Uz, t, h) = p(E)z(t) - ho( 
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is O(hr+‘) as h + 0 for each t and each smooth function z = z(t). It follows easily that, 
for any integer J > r + 1, there is an expansion 

J-l 

uz, t, h) = o(E) ~qh’+‘z”+l’(t) + O(hJ+‘), h + 0, (4) 
l=r 

for suitable constants {cl} depending only on 
We say that the formula (3) is started with 

p and 0. 
a starting procedure of order s >/ 1 if 

yv-y(t,,)=O(hS), u=O,l,..., k-l, 

as h + 0, where y(t) is the solution of (l)-(2). It is assumed that the starting procedure is 
smooth in the sense that an expansion 

J 

yv = y(h) + z hi+’ + O(hJ+‘), v=O,l,..., k-l, (5) 
j=s 

is valid for each J > s. All starting procedures used in practice are smooth. 
In this section we consider the case where (3) is strongly stable, i.e. all roots of p have 

modulus < 1 and 1 is the only root of unit modulus. 
A key ingredient of our analysis is the asymptotic expansion of the global error. This 

goes back to Gragg’s thesis, see Stetter (1973). A proof due to Hairer and Lubich may be 
seen in Hairer et a2 (1993). Here we only write the expansion up to O(h2r-1) terms because 
this is all we need (see the discussion in Section 8 of Cano & Sanz-Serna (1995)). 

THEOREM 1 Assume that a strongly stable LMM of order r 2 1, using a smooth starting 
procedure of order r is applied to solve (l)-(2). Then 

2r-1 

Yn = Y(b) + C h$(tn) + O(h*‘), h + 0, (6) 
j=r 

with tn 
1 1 

2r- 
ej j=r 

= to + nh, rt > 0, where yn is the numerical solution given 
are smooth functions that obey the variational equations 

by the 

ii(t) = f'(Y(t))ej(t) - Cjy(j+l)(t), (7) 

where the cj are the constants in (4). 
The constant implied in the O(h2r) remainder in (6) can be chosen to be independent of 

tn for tn in each compact interval [a, tma] with to < S < tmax. 

In the variational equation (7) the terms in the expansion of the truncation error (4) act 
as forcing terms; this is similar to the situation for one-step methods. However there are 
some differences between the expansion (6) and the expansion corresponding to one-step 
methods. First, the initial condition ej(to) for (7) is in general # 0; its value is determined 
in a complicated way matching the expansion of the global error and the expansion of the 
starting procedure (5). It is possible, but not practical, to ensure ej(to> = 0 by carefully 
choosing the starting procedure. A second difference to the one-step case is that here the 
expansion (6) is not valid up to to. 
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2.2 Error growth in periodic solutions 

We now assume that the solution of (l)-(2) is T-periodic and investigate the growth with t 
of the functions ej (t) in (6). Our main tool is the transition matrix M(t, s) associated with 
the homogeneous variational equation 

of (l)-(2). By definition, for each vector 60, M(t, s)& is the solution of the initial value 
problem given by (8) and the initial condition Qt = s) = SO. Thus, for l small, M(t, S)E& 
is approximately the effect that a perturbation of size ~60 at time s has at time t on the solu- 
tion of (l)-(2). Of particular significance is the matrix MI, = M(to + T, to) that governs the 
amplification of errors after one period; this is called the monodromy matrix of the periodic 
solution and its eigenvalues are the corresponding Floquet multipliers. The magnitude of 
the Floquet multipliers thus governs the growth of perturbations of the periodic orbit. 

By decomposing (7) according to the effects of the source term and the initial condition, 
we may write 

ej (t> =ej(O+ef*(t), j =r ,..., 2r- 1, 

with 

s t e;(t) Cj =- M(t, s)y(j+‘)(s) ds, e;‘(t) = M(t, to)ej’(to). 
to 

C-9 

Next, we introduce the notation 

ej[N] =ej(to + NT), 
ef[N] =ef(to + NT), 

ej’[N] = ej’(to + NT), 

for the values of ej, ej, ej’ after a whole number N > 0 periods. A key observation is that 
the growth of ej (t) as a function of t is essentially determined by the growth of ej [ N] as a 
function of N. In fact, if t E [to + (N - l)T, to + NT], then 

ef ’ (t) = M(t - (N - l)T, to)ef’(to + (N - l)T), (10) 

so that e!‘(t) grows like ef’(to + (N - l)T) because M(t - (N - l)T, to) is uniformly 
bounded in view of the bound ] t - (N - 1) T - to 1 < T. For e$ , the following lemma shows 
similarly that ej (t) grows like ej (to + (N - 1) T). 

LEMMAS IftE[tO+(N- l)T, to + NT], then, for r < j < 2r - 1, 

e;(t) = M(t - (N - l)T, to)ef(to + (N - l)T) 
t-(N-1)T 

-Cj M(t - (N - l)T, s)y(j+‘)(s)ds. 
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Proq? From (9), we have 

s t ei (t) = -Cj M(t, s)y(j+‘)(s) ds 
to 

s to+(N-1)T -- - 9 M(t, to + (N - l)T)M(to + (N - l)T, s)y(j+‘)(,)ds 
to 

s 

t 
-Cj M(t, s)y(j+‘)(s) ds. 

to+w-l)T 

The proof follows from the periodicity of y(j+? 

61 

0 

In what follows we therefore restrict our attention to the values ej [N] rather than con- 
sidering the functions ej (t) for real t. The next result expresses ej [N] in terms of ef [ 11, 
ej [0] and the monodromy matrix Mto. 

THEOREM 2 With the preceding notation, for N = 2,3, . . . 

e; WI = M,ej[N - l] + e;[l], 

ej’[N] = M,ej'[N - 11, 

and therefore 

N-l 

ej[N] = x M:‘, 
( > 

ej[l], (11) 
i=O 

ej*[N] = Mt~-‘e~‘[l] = Mlyej[O]. (12) 

Pro~$ The first formula is obtained by setting t = to + NT in Lemma 1. The second 
formula is similarly derived from (10). Then (11) and (12) follow easily. 0 

The growth of the matrices in (11) and (12) is governed by the growth of the corre- 
sponding Jordan blocks. In this connection we have the following lemma, whose proof is 
a simple exercise in linear algebra. 

LEMMA 2 Assume that M is a p x p Jordan block with eigenvalue h. Then, as N t 00: 

(i) If ]A] >/ 1, h # 1, then 

= O(Np-' IAIN), 

(ii) If 111 c 1, then 
N-l 

II II 
>: 

M' = O(l), 
i=O 

(iii) If h = l,p> lthen 

= O(Np), 

llMNII = O(Np-lIhIN). 

lWNIl = dl)* 

llMN(( = O(N@-'). 



62 B.CANOANDJ.M.SANZ-SERNA 

(iv) If h = 1, p = 1, then 
N-l 

>: 
Mi =N, MN=l. 

i=O 

From the preceding results we conclude: 

THEOREM 3 With the hypotheses of Theorem 1, assume that the solution of (l)-(2) is 
T-periodic. Then the following mutually exclusive possibilities arise: 

(Gl) The solution y(e) has a Floquet multiplier of modulus > 1, or in other words the 
monodromy matrix Mto has spectral radius R > 1. Then, for j = r, . . . ,2r - 1, 
N + 00, ej[N] = 0 (Np-* RN) where p is the size of the largest Jordan block of 
Ml0 corresponding to the eigenvames of modulus R. 

(G2) All Floquet multipliers have modulus < 1. Denote by p the size of the largest Jordan 
block of M, corresponding to eigenvalues # 1 of modulus 1 and denote by ~1 
the size of the largest Jordan block of Mr0 with eigenvalue 1 (~1 22 1). Then, for 

J =r,...,2r - 1, 

IlejWlII = O(W, v = max(p - 1, PI), 

while 

Ilej’[N]ll = O(N”), v’ = max(p - 1, ~1 - 1). 

Therefore, the error growth is polynomial. 

In the cases (Gl) or (G2) with p - 1 > ~1, the growth of the bound for ef’[N] is not 
faster than that of the bound for e: [N]. In the case (G2) with p - 1 -C ~1, the growth of the 
bound of ej’ [N] is actually slower than that of the bound for ej [N]. For this reason, there 
is no interest in trying to find special starting procedures to ensure ej (to) = 0 and therefore 
eI* j = 0. 

The following particular case of (G2) deserves special attention. 

(G2’) The periodic solution is hyperbolic and attracting, i.e. 1 is a simple Floquet mul- 
tiplier and the remaining D - 1 multipliers have modulus < 1. This corresponds 
to case (G2) above with p = 0, ~1 = 1. Therefore, lie; [ N] II = O(N) and 

Ilej’[NIII = 0 (1). If we decompose e; [N] according to eigenvectors and gener- 
alized eigenvectors of Mt,, then the components of ej [N] corresponding to multipli- 
ers # 1 remain bounded by (ii) in Lemma 2. Therefore, the only component which 
grows linearly is the one associated to the eigenvalue 1, that is to say, to the eigen- 
vector f(yo). This means that the error committed is basically a phase error. 

The situation (G2’) is generic: if a differential system has a periodic orbit in (G2’) then 
all neighbouring differential systems have a periodic orbit in (G2’). 

REMARK 1 In each of the previous cases, when the starting procedure is of order r + 1, 
the initial condition for e, can be shown to be zero. It follows that the only component in 
the principal term e, (t> is ef (t). 
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2.3 Reversible systems 

We now consider the case where the system (1) being integrated is reversible (Arnold & 
Sevryuk (1986), Sevryuk (1986)). Let A be a linear involution in RD, i.e. a linear mapping 
in RD with A2 = I. To avoid trivial cases we assume that A # &I. Then RD is decom- 
posed as a direct sum RD = X+ @ X-, where Av = &V if IJ E X& and the subspaces X+ 
and X- have dimension > 1. The system (1) is said to be A-reversible if 

f (fw E -Af (x). (13) 

Reversible systems often arise in many applications including mechanics, see Cano & 
Sanz-Serna (1995), Sanz-Serna (1997). 

A nontrivial periodic solution y(g) of a A-reversible system (13) is called symmetric if 
the corresponding trajectory in phase space RD intersects the invariant subspace X+ of 
A. The monodromy matrix of a symmetric orbit has special properties (Cano & Sanz- 
Serna (1995)) that, as we will show next, have an impact on the error growth of numerical 
integrators. The following result is analogous to Lemma 5.7 of Can0 & Sanz-Serna (1995). 
The situation here is more favourable than for one-step methods because the method is not 
supposed to be time-reversible. 

LEMMA 3 When a strongly stable LMM is employed to integrate a reversible initial value 
problem (l)-(Z), (13) where a E X+, and the solution is a symmetric periodic orbit, the 
coefficients ei with even j (j = r, . . . ,2r - 1) of the asymptotic expansion of the error 
satisfy 

MloAei[N] = -ef[N]. (14) 

Proofi From the reversibility 

AM(t, + t, to + s) = M(to - t, to - s)A, 

so that from (9), we may write 

s to+T 
M,nef[N] = -Cj M(to + T, to)AM(to + T, s)y(j+“(s) ds 

to 

s 

to+T 
-- - ci M(to + T, to)M(to - T, 2to - s)A~~j+‘)(s) ds. 

to 

Making the change of variables u = 2to + T - s, we have 

/ 

to+T 
M,Aei[N] = -cj M(to + T, to)M(to, u)Ay”+“(2to + T - u) du. 

to 

Now the periodicity and symmetry of y(e) lead to the result. 0 

THEOREM 4 Assume that the solution of the reversible initial value problem (l)-(Z), (13) 
is a symmetric periodic orbit and that a E X+. When integrating a strongly stable LMM as 
in Theorem 1, the following possibilities arise: 
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(Rl) There is a Floquet multiplier of modulus # 1. Then, ej [N] (j = r, . . . ,2r - 1) grows 
exponentially with N. 

(R2) Every Floquet multiplier has modulus 1. Then, ej [N] (j = r, . . . ,2r - 1) grows 
polynomially with N. 

Let us consider the following particular cases of (R2): 

(R2’) Every Floquet multiplier # 1 has Jordan blocks of size < 2 and the multiplier 1 only 
possesses trivial Jordan blocks (of size 1). Then, ej [N] grows linearly with N. 

(R2”) Every Floquet multiplier has Jordan blocks of size < 2, and for the multiplier 1 
there are no generalized eigenvectors in X-. Then, 

l ej [N] grows linearly if j is even and quadratically if j is odd. 
l In particular, if the order r of the method is even, the leading O(V) error term 

in (6) grows linearly and the O(V+‘) error term grows quadratically. 

Proo$ The case (Rl) is a consequence of the behaviour of (Gl) in Theorem 3, because for 
a symmetric orbit the Floquet multipliers appear in pairs A, l/h. The cases (R2) and (R2’) 
are straightforward applications of (G2) in Theorem 3. 

For the case (R2”) we begin by noticing that it is easy to prove that if a vector Z belongs 
to the invariant subspace of & associated with a Floquet multiplier h, then M,,AZ belongs 
to the invariant subspace of Mt, associated with the multiplier l/)L. By setting in particular 
h = 1, we conclude from (14) that, for even j, 

where Zj denotes the component of ej[l] in the invariant subspace of MI0 associated with 
the multiplier 1. After this the proof is concluded by using the argument in Theorem 5.1 of 
Can0 & Sanz-Serna (1995). cl 

Some remarks are in order. 
The hypothesis a E X+ is not necessary. This can be shown by an argument similar to 

that in the remark that follows Theorem 5.1 of Cano & Sanz-Serna (1995). 
The case (R2”) includes many examples found in applications, including the periodic 

solutions of Kepler’s problem. A discussion may be seen in Section 5.4 of Cano & Sanz- 
Serna ( 1995). 

In the case (R2”) it is possible to determine those directions in which the error growth 
takes place, see Cano (1996). 

3. Weakly stable methods 

3.1 Preliminaries 

We now consider a weakly stable LMM and denote by xi, i = 1, . . . , m, 2 < m < k, the 
(simple) roots of unit modulus of the polynomial p, with x1 = 1; the roots of p different 
from the xi have modulus < 1. Associated with each xi there is a growth parameter hi 

a(Xi) hi = - 
XiP’CXi>’ 

i = 1,. . . ,m. (15) 
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Note that hi = 1 by consistency. 
In lieu of Theorem 1 we now have the following result, where the main feature is the 

appearance of terms Xineji (t,), j = r, . . . ,2r - 1, i = 2, . . . , m that do not vary smoothly 
with tn. 

THEOREM 5 Using the above notation, assume that a weakly stable LMM of order r > 1, 
using a smooth starting procedure of order r, is applied to solve (l)-(2). Then 

2r-1 

Yn = Y(tn) + >: hi cxyeji(tn) + O(h2’), [ 1 h + 0, (16) 
j=r i=l 

whereeji, j =r,..., 2r-l,i = l,..., m are smooth functions that satisfy the variational 

eji (t> = hi f ‘(y(t>>eji (t) + bji (t>, (17) 

with 

bjl(t)=-Cjy(j+l)o), j = r,. . . ,2r - 1, 

and, for 2 < i < m, 

bri (t) = 09 

j-r 

bji(t)=-~cli’e~~~~(t), j=r+1,...,2r-1. 
I=1 

Here the cj are the constants in (4) and cl(i) are constants depending on the polynomials p, 
CT. 

The constant implied in the O(h2r) remainder in (16) can be chosen to be independent 
of tn for tn in each compact interval [a, t,,] with to < S < t-. 

Again the initial values for the variational equations are # 0 and may be found by 
matching the starting procedure. 

3.2 Symmetric methods 

The most important example of weakly stable methods is given by symmetric methods 
methods that satisfy 

1 
p(x) = -xkp - ) 0 1 

a(x) = xka - , 
X 0 X 

or 

Qfj = -ak-j, Bj=Bk-j, j=O,...,k. 

, i.e. 

It is clear that for a symmetric method the roots of p other than & 1 appear in pairs x, 1 lx. 
Therefore a symmetric method cannot be strongly stable; it is either unstable or weakly 
stable. 
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Assume that a symmetric k-step method is applied to the solution of a A-reversible sys- 
tem (13). If yn, yn+l, . . . 9 yn+k are k + 1 consecutive values of a numerical trajectory, then 
&z+k, Ayn+k-1 t l l 9 9 Ayn are also consecutive values of a numerical trajectory (Stoffer 
(1988)). This is the discrete analogue of the fact that if y(t) is a solution of a reversible 
system then Ay (-t> is also a solution. Therefore symmetric methods are of potential in- 
terest in the integration of reversible problems. It has also been suggested that they may be 
of interest in the solution of Hamiltonian problems (Eirola & Sanz-Serna (1991)). 

The following lemma summarizes some well-known properties of symmetric methods 
(Stetter (1973)). 

LEMMA 4 Every symmetric LMM satisfies: 

(i) The growing parameters hi (i = 2, . . . , m) defined in (15) are real. 
(ii) The coefficients {cj} which define the truncation error (4) vanish for odd j. 

(iii) For i = 2, . . . , m, the constants cii) which appear in the definition of the coefficients 
eji in ( 16) are imaginary for odd 2, and real for even j . 

(iv) If x2 = -1, cI (2) = 0 for odd 1. 

3.3 Error growth in periodic solutions 

When i = 1 (i.e. for the principal root xi = 1 of p), hl = 1 and the variational equation 
(17) reduces to the variational equation (7). Therefore all the results for the coefficients 
ej(t), j = r, . . ..2r - 1, obtained in Sections 2.2 and 2.3 can readily be translated into 
results for the coefficients eji (t), j = r, . . . ,2r - 1 in the expansion ( 16) of the error in a 
weakly stable LMM. Let us study in particular the case of a symmetric orbit of type (R2”) 
integrated by a weakly stable symmetric LMM. For the ej 1 (t), j = r, . . . ,2r - 1, with 
even j the growth is linear as in Theorem 3. For j odd we have, with a notation similar to 
that in Section 2.2, ejr (t) = 0 because cj = 0 (see Lemma 4). Since e;:(t) grows linearly 
(all Jordan blocks have size < 2) then ejr (t) grows linearly for j = r, . . . ,2r - 1, This is 
analogous to the situation for a (R2”) symmetric orbit integrated with a symmetric one-step 
method (Cano Jz Sanz-Serna (1995)). 

However, we still have to study the growth of the eji (t), j = r, . . . ,2r - 1, i = 2, . . . , m, 
associated with the roots xi # 1. Proceeding as in Section 2.2, 

eji (t) = efi(t) + e;!(t), 

s t efi(t) = M”‘(t 9 s)bji (s) ds 9 ef! (t) = M"'(t to)eji(to) 9 9 

to 

where M@)(t, s) is the transition matrix of the linear system 

i(t) = hf’(r(t))s(t)9 (19) 

(y(t) is the solution of (l)-(2)). We therefore have to investigate the growth of the powers 
[Mci)lN with Mt) = to M(‘)(to + T, to). Unfortunately the systems (19) have no relation 
whatsoever with the 
quence, the powers [ 

variational equation (8) of the orbit being 
Mz’] N typically grow exponentially even in 

integrated. As a 
cases where the 

conse- 
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A$’ only grow polynomially, i.e. where perturbations of the initial value problem (l)-(2) 
only grow as a polynomial in t. We present two examples. 

EXAMPLE 1 Let us consider Newton’s second law for the motion of a particle of unit 
mass with a potential V(q) = 2q sign(q), where 4 is the (scalar) coordinate. The equations 
of motion are 

4 = P* 

This system is reversible with respect to A(p, q) = (-p, q) and Hamiltonian. If q(to) = 1, 
PVo> = 0, the particle undergoes a periodic motion of period T = 4. The monodromy 
matrix is found to be 

1 4 ( > 01’ 

with 1 as a double eigenvalue: an initial perturbation grows linearly with time. On the other 
hand a simple computation reveals that 

Ad ) i - 1 - 8hf + 8$ -4hi + Sk! 
20 - 

> Ai(4-12hf+8Af) 1-8Af+8Af ’ 

Since 

trace(Mt)) = 2 + 16hf(Af - l), 

for real hi with Ihi 1 > 1, iVt’ has real eigenvalues and one of them is of modulus > 1, 

leading to exponential growth of the powers [A4z’lN. In this example the potential is not 
smooth; it is possible to regularize the potential by changing its values in a small neigh- 
bourhood of the origin. By continuity, the regularized problem would still lead to matrices 
with eigenvalues of modulus > 1. 

EXAMPLE 2 For the reversible, Hamiltonian Kepler problem in Sanz-Serna & Calvo 
(1994, Example l.l), we have computed numerically (Cano (1996)) that Ml’ has spec- 
tral radius > 1 as soon as hi # Al. 

In view of this exponential growth, weakly stable LMM, symmetric or otherwise, cannot 
be recommendedfor the integration of reversible or Hamiltonian problems. Let us present 
some numerical illustrations. We have integrated the symmetric orbit arising in the Kepler 
problem in Sanz-Serna & Calvo (1994, Example 1.1) (eccentricity e = 05) by means 
of the symmetric LMM specified by p(x) = (1/3)(y3 - l), U(X) = (1/2)(y* + y). 
In a first experiment, the missing starting values are found by Euler’s rule, yo = y(O), 

Yl = yo + hf (Yoh Y2 = yi + hf (yi). The norm of the error as a function of t is given in 
Fig. 1 (here norm means the maximum norm in the four-dimensional space of the (p, q) 
variables). The exponential error growth is apparent and at t x 50 the errors are large 
in spite of the tiny stepsizes used, h = 2rt x 10w4/J, J = 36,72, 144,288,576. Fig. 2 
corresponds to a second case where yo, yi, y2 are taken from the ‘exact’ solution and h = 
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TIME 

FIG. 1. Exponential error growth in the numerical integration of the Kepler problem with a symmetric linear 
multistep method for first-order systems. The starting values are found by Euler’s rule. 

2rt x 1O-4/J, J = 9, 18,36,72. A careful analysis (see Cano (1996)) shows that the 
leading 0(h2) error term grows linearly due to the more accurate choice of starting values. 
Nevertheless the next 0(h3) term grows exponentially. In the figure the growth appears to 
be linear in the initial time interval where the 0(h3) term is negligible; after nine periods 
the 0(h3) term dominates and the exponential growth manifests itself. 

Before closing this section we should point out that the weakly stable explicit midpoint 
rule, used in extrapolation codes, is exceptional: the error grows as in a one-step method. 
This can be shown by rewriting the method as a one-step method as in Setter (1970). A 
detailed discussion can be seen in Cano (1996). 

4. Second-order systems 

4.1 Preliminaries 

Finally, we study the solution of the initial value problems 

F(t) = F(Y(t)), 

Y (to) = A, p(to) = B, 

(F is smooth in Rd) by an LMM2 

k k 

>: Al Y,+r = h2 x mvn+l). 

z=o I=0 

Now the characteristic polynomials are 

(20) 
(21) 

(22) 

R(x) = &Xk + Ak-lXk-l + l l l + Ao, 

s(x) = &Xk + &-lXk-’ + l l l + Bo. 
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I 

loo 10’ lo* 
TIME 

FIG. 2. Error growth in the numerical integration of the Kepler problem with a symmetric linear multistep method 
for first-order systems. The starting values are exact. An exponential error growth manifests itself after nine 
periods. 

We assume throughout that Ak # 0 and that the method is irreducible (i.e. R and S have 
no common factors) and consistent (i.e. Z?(l) = R’(1) = 0, R”(1) = 2S(l)). Furthermore 
we normalize the method coefficients so that S( 1) = 1. 

It is well known that if (20) is rewritten as a first-order system in RD, D = 24 

v = F(Y), p = V, (23) 

then the applications to (23) of the LMM specified by the polynomials p, 0 is equivalent, 
after eliminating the velocities Vn, to the application to (20) of the LMM2 specified by 
R = p2, S = 02. 

For a method of order r there is an expansion 

J-l 

i(Z, t, h) = S(E) x cjhz+22(z+2)(t) + O(hJ+2), 
I=?- ) 

of the truncation error 

&Z, t, h) = R(E)Z(t) - h2S(E)g(t). 

The constants cl in (24) only depend on R and S. 
We say that the formula (22) is started with a procedure of order s if 

yv - Y(t,) = O(hS), v = 0, 1,. . . , m - 1, 

(24) 

as h -+ 0, where Y(t) is the solution of (20)-(21). Starting procedures are assumed to be 
smooth as in (5). 

For LMMs, we studied separately the strongly and weakly stable cases; we treat all 
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LMM2s at once. We denote by xi, i = 1, . . . , m, the double roots of unit modulus of R, 
with x1 = l.Furthermore,letx~,i=m+l,..., m + I, be the simple roots of R with unit 
modulus. The roots of R different from xi, i = 1, . . . , m +I, are supposed to have modulus 
c 1, so as to have stability. Each xi, i = 2, . . . , m, leads to a growth parameter 

20 (Xi ) 
ki = - 

X? p”(Xi) ’ 

The asymptotic expansion of the global error is presented in the following theorem, 
where we will need the polynomial 

THEOREM 6 Assume that a stable LMM2 of order r > 1, using a smooth starting proce- 
dure of order r, with 

Rz(E)[Yl - Y(Q)] = O(h’+‘), 2 = 0, 1,. . . , m - 1, 

is applied to solve (20)-(21). Then, 

h + 0, (26) 

wherethe&ji, j=r ,..., 2r-l,i=l,..., m + I, are smooth functions that we describe 
next. 

(i) For i = 1, &j 1 solves the equation 

t;,l(t) . = F’(Y(t))Ejl (t) - Cj Y(j+2)(t), (27) 

where cj are the constants in (24). 
(ii) For i = 2, . . . , m, the Eji satisfy 

tji (t) = pi F’(Y(t))Eji (t) + bji (t), 

with 

b,i (t) = 0 
j-r 

bji(t)=--~~i)&~~~~(t), j=r+1,...,2r-1. 
I=1 

Here Ii are the growth parameters in (25) and $’ are constants that only depend on 
the characteristic polynomials R and S. 

(iii) Fori=m+l,...,m+Z,the&satisfy 

&(t) 
1 j-r+1 

. . -- _ - - 
@i, 1 [ T;1 czri,rli(l),+~ i(t) , 

1=2 

j-r- 
+x I=0 

1 

B 
d’ 

i,l -$[f ‘(y(t))&j--l-l,i(t)l 1 7 (28) 

where ail, /Ii) are method-dependent constants. 
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The constant implied in the O(h2r) remainder in (26) can be chosen independent of tn for 
tn E [6, t,,,], where 0 < S c tmax. 

An idea of a proof is given in Hairer et al (1993). Full details of an alternative proof may 
be seen in Cano (1996). 

4.2 Error growth for periodic orbits 

Our task is now to study the behaviour of the functions Eji (t) in (26) where the solution of 
(20)-(21) is a T-periodic function. 

Let us begin with the Eji (t) associated with the root xi = 1. We rewrite the variational 
equation (27) in first-order form as 

and consider the transition and monodromy matrices of this first-order system with the 
corresponding Floquet multipliers. Then, it is a simple matter to derive formulae for 
Eji (to + NT) similar to those we obtained for ej [N] in Section 2.2. From there, we can 
ascertain the behaviour of the Eji (to + NT) in terms of the Floquet multipliers as in 
Theorem 3. 

For the Eji(t) with i = 2, . . . , m, we have to deal with variational equations that in 
first-order form are 

As Examples 1 and 2 in Section 3.3 show, the transition matrices for (29) have properties 
that do not relate to the Floquet multipliers of the periodic solution being studied. Thus 
in general the Eji(t), i = 2, . . . , m, grow exponentially and methods with double roots xi 
of unit modulus, xi # 1, cannot be recommended. In this connection note that a weakly 
stable LMM applied to (23) induces a LMM2 with parasitic double roots of unit modulus 
because R(x) = p*(x). 

Finally let us study the behaviour of the function Eji, i = m + 1, . . . , m + I, associated 
with simple roots of unit modulus. 

THEOREM 7 Given the situation of Theorem 6 and assuming that the solution of (2O)- 
(21) is T-periodic, the functions Eji(t), j = r, . l . ,2r - 1, i = m + 1, . l . * m + I, grow 

like 0 (tj-‘) 
If, in addition, the starting procedure is of order r + 1, then, for i =m+l,...,m+Z, 

Eri(t) = 0 and cji grows like O(tj-‘-‘), j = r, . . . ,2r - 1. 
If, furthermore, the starting procedure is of order r + 2, then, for i = m + 1, . . . , m + I, 

Eri(t) = &+i i(t) = 0 and Eji grows like O(tj+-*), j = r, . . . ,2r - 1. 9 

Proo$ The first part is settled by inductively showing in (28) that Eyi is O(tj-‘-I) if 9 
j-r - 2 >/ 0 and O(1) if j - r - I c 0. 

The second part is proved by showing that, when deriving the initial values Eri(to) by 
matching the starting procedure, one obtains & (to) = 0 and hence &i (t) = 0. From there 
the proof proceeds by induction. 

The proof of the third part is analogous. More details can be found in Cano (1996). Cl 
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REMARK 2 The use of starting procedures of order Y + 3, r + 4, . . . does not bring any 
further reduction in the growth of the Eji(t), i = m + 1, . . . , m + I, see Cano (1996). 

4.3 Reversible systems 

For second-order equations (20) each linear involutive map ,S in Rd with 

80 FoE=F, (30) 

for the associated first-order system (23). The choice E = I gives an important particular 
example. Note that for this choice, the subspaces X+ and X- associated with A consist of 
vectors of the form (0, Y) and (V, 0) respectively. 

The proof of the following result is similar to that of Lemma 3. The notation is as in 
Section 2. 

LEMMA 5 Assume that an LMM2 is used to integrate an initial value problem (20)- 
(21) that is reversible with respect to A in (31). If (A, B) E X+(A) and the solution is 
T-periodic, then the functions E;t with even j, r < j < 2r - 1, satisfy 

From this lemma we can obtain the following result for the 
associated with the principal root x1 = 1 of R. 

growth of the functions cji 

(32) 

THEOREM 8 Assume that the initial value problem (20)-(21) is reversible with respect 
to A in (31) and has a symmetric, T-periodic solution. 

Assume that all the Floquet multipliers have unit modulus (case (R2) in Theorem 4). 
Then in the asymptotic expansion (26) the functions Ejr, j = r, . . . ,2r - 1, grow polyno- 
mially with t. 

The following cases are important. 

(R2’) All Floquet multipliers # 1 have Jordan blocks of size < 2 and the multiplier 1 only 
possesses trivial Jordan blocks (of size 1). Then Ej 1 (t), j = r, . . . ,2r - 1, grow 
linearly with t. 

(R2”) Every Floquet multiplier has Jordan blocks of size < 2, and for the multiplier 1 
there are no generalized eigenvectors in the space of fixed points of -A. Then, 

l &jr [N] grows linearly if j is even and quadratically if j is odd. 
l In particular, if the order r of the method is even, the coefficient &t(t) in the 

leading term in (26) grows linearly and the coefficient &+I 1 (t) grows quadrati- , 
tally. 
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FIG. 3. Linear error growth in the 
method for second-order systems. 

numerical solution of the with a symmetric linear 

This result explains why, in the integration of Kepler’s problem with Stormer methods 
cm = 1, 2 = 0) of even order (Quinlan & Tremaine (1990)), the error grows first linearly 
with t (when t is small and the leading 0(/z’) term of the expansion dominates) and later 
quadratically with t. 

4.4 Symmetric methods 

We finally study the situation when the method in (22) is symmetric, i.e. 

or 

Ak =Ak-j, Bk= Bk-j, j=O ,..., k. 

For a symmetric 
r is then even. 

method the truncation error constants cl in (24) vanish for odd I; the order 

For a stable symmetric method all roots of R have unit modulus. If one of these roots, 
different from xi = 1 , is double, then, for the reasons discussed in Section 4.2, the use of 
the method cannot be recommended. H :ence we restrict our attention to symmetri c methods 
for which x1 = 1 is the only double root of R and all other roots are simple (with unit 
modulus), i.e. m = 1, I = k - 2. 

Just as for LMMs, symmetric LMM2s inherit a reversibility property from the system 
being integrated, this makes them appealing for reversible systems. In fact, for a symmetric 
method some of the conclusions of Theorem 8 may be strengthened. In the case (R2”), the 
functions Eji with odd j, j = r, . . . ,2r - 1, that, in principle, may grow quadratically, 
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only grow linearly because the coeffecient ci in the source term in (27) vanishes. Then Ejr 
grows linearly for j = r, . . . , 2r - 1. Furthermore, according to Theorem 7, the remaining 
Eji, i # 1, grow at most linearly for r < j < min(r + 3,2r - l), if the starting procedure is 
sufficiently accurate. As a result, when h is small enough for the asymptotic expansion to 
capture the behaviour of the global error, the global error will show a linear behaviour as a 
function of t . This was experimentally found in Quinlan & Tremaine ( 1990). A numerical 
illustration follows. We have integrated the Kepler problem of Sanz-Sema & Calvo (1994), 
this time with the order 8, explicit, symmetric LMM2 

R(x) =x8 - 2X7 + 2X6 - x5 - x3 + 2x2 - 2X + 1, 

S(x) - - --&17671x7 - 23622x6 + 61449x5 - 50516x4 

+61449x3 - 23622x2 + 17671x1, 

derived in Quinlan & Tremaine (1990). The roots of R are (1 & &)/2 and the fifth roots 
of 1, with 1 a double root. To decrease the effects of round-off, we have used compensated 
summation and rewritten the method in first-order form (see Hairer et al (1993)). The 
starting values are computed ‘exactly’ by means of a Runge-Kutta package. The results, 
for eccentricity e = O-2, are given in Fig. 3, for h = 2n/150,2n/300. The linear growth 
makes it possible to integrate accurately as far as t x 5 x 107. 
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