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Order conditions for numerical integrators
obtained by composing simpler integrators

By A. Murua1 and J. M. Sanz-Serna2
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EHU/UPV, Donostia/San Sebastián, Spain

2Departamento de Matemática Aplicada y Computación, Facultad de Ciencias,
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For numerical one-step integration methods obtained by composing or concatenating
simpler methods, we study the conditions that the method has to satisfy to attain
a prescribed order of accuracy. An existing methodology uses the Baker–Campbell–
Hausdorff formula; we develop an alternative technique based on the use of rooted
trees and similar to that which is standard in the analysis of Runge–Kutta meth-
ods. In the present approach, the order conditions can be written down easily by
transcribing the structure of the corresponding rooted trees.

Keywords: geometric integration; splitting methods; order conditions;
composition methods; rooted trees; one-step methods

1. Introduction

The purpose of this paper is to show how to write easily the order conditions for one-
step integrators obtained by composing simpler methods. Such composition methods
have gained prominence in recent years, mainly through their use in geometric inte-
gration (Sanz-Serna 1997).

Let
dy

dt
= f(y) (1.1)

be the system to be integrated, with the function y taking values in R
D. Each one-step

method for the integration of (1.1) is described by a mapping ψh,f : R
D → R

D, so
that, if yn is the numerical solution at time tn, then yn+1 = ψh,f (yn) is the numerical
solution at the next time level tn+1 = tn + h. For instance, ψh,f (y) = y + hf(y)
corresponds to Euler’s rule. A method is of order r if the local error ψh,f (y)−φh,f (y)
is O(hr+1) as h → 0, where φt,f denotes the exact solution flow at time t of the
system (1.1). Consistency means order greater than or equal to 1. When there is no
ambiguity as to the system being integrated, we write ψh rather than ψh,f and φh

rather than φh,f .
The most classical family of composition integrators operates in the case where f

in (1.1) can be written as f = f1 + f2 and each of the split systems
dy

dt
= f1(y),

dy

dt
= f2(y)

can be integrated in closed form. Then the composition or concatenation

ψh,f = φh,f2 ◦ φh,f1 (1.2)
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defines a consistent split-step method for the integration of (1.1). The celebrated
second-order splitting method due to Strang (1968) is given by

ψh,f = φh/2,f2 ◦ φh,f1 ◦ φh/2,f2 , (1.3)

and, in general, one may consider methods of the form

φh,f = φbsh,f2 ◦ φash,f1 ◦ · · · ◦ φb2h,f2 ◦ φa2h,f1 ◦ φb1h,f2 ◦ φa1h,f1 ◦ φb0h,f2 , (1.4)

where the method coefficients ai, bi may be chosen to boost the order. In (1.4) we
have assumed for later convenience that the first and last substeps involve f2; this is
no restriction because we can take b0 = 0 and or bs = 0.

A second type of composition integrators consists of methods of the form

ψh = ψ
[B]
γsh ◦ · · · ◦ ψ

[B]
γ2h ◦ ψ

[B]
γ1h, (1.5)

where the γi are real constants and ψ
[B]
h , the so-called basic method, is a given con-

sistent method for the integration of (1.1). In practice ψ
[B]
h is a low-order method

(typically r = 2) with a favourable geometric property (for instance ψ
[B]
h is sym-

plectic for Hamiltonian systems (Sanz-Serna & Calvo 1994), or volume preserving
for divergence-free systems); one aims at choosing s and the γis so as to obtain
a high-order method (1.5), which will automatically inherit the relevant geometric
property if this property is preserved by composition. Methods of the form (1.5)
have been considered frequently in the recent literature; a very well-known reference
is Yoshida (1990). One usually works under the assumption that the basic method is
self-adjoint. Recall that the adjoint of a method ψh is, by definition, the method ψ∗

h
such that ψ∗

−h ◦ ψh = id (id denotes the identity mapping); a method is self-adjoint
if ψ∗

h coincides with ψh, i.e. if ψ−h ◦ ψh = id. When the basic method is self-adjoint
it is possible to choose s and the γi for (1.5) to have any desired order r (see, among
others, Yoshida (1990) and § 13.1 of Sanz-Serna & Calvo (1994)).

When the basic method is not self-adjoint the format (1.5) turns out not to be
too advantageous and it is better to consider compositions of the more general form
(McLachlan 1995)

ψh = ψ
[B]
βsh ◦ ψ

[B]∗
αsh ◦ · · · ◦ ψ

[B]
β2h ◦ ψ

[B]∗
α2h ◦ ψ

[B]
β1h ◦ ψ

[B]∗
α1h . (1.6)

A list of references for composition methods can be found in Sanz-Serna (1997).
For references in the chemistry literature, see Sans-Serna & Portillo (1996).

In any of the formats (1.4), (1.5) or (1.6), the need arises to find the order con-
ditions, i.e. the equations in the parameters ai, bi, γi or αi, βi that ensure that the
composition method has a targeted order r. The standard methodology for deriv-
ing such order conditions for composition methods involves the use of the Baker–
Campbell–Hausdorff (BCH) formula (Bourbaki 1989; Hairer et al. 1993) which has
been reviewed in detail in Sanz-Serna (1997).

In the case of (1.6) this methodology involves the following steps (the cases (1.4),
(1.5) are similar and will not be discussed).

(i) Write the modified vector field f̃
[B]
h of the basic method. This is a formal series

f̃
[B]
h (y) = F (1)(y) + hF (2)(y) + h2F (3)(y) + · · · (1.7)

such that (at least as a formal series) ψ
[B]
h coincides with the h-flow φ

h,f̃
[B]
h

. Note that,
from consistency, F (1) = f and that ψ

[B]
h has order r � 2 iff F (2) = · · · = F (r) = 0.
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Order conditions for numerical integrators 1081

The modified vector field f̃
[B]∗
h of the adjoint method is obtained by changing h into

−h, i.e.

f̃
[B]∗
h (y) = F (1)(y) − hF (2)(y) + h2F (3)(y) − · · · . (1.8)

(ii) After step (i), each of the mappings in the right-hand side of (1.6) may be
rewritten as a flow. In turn, each flow can be identified with an exponential of a Lie
operator.

(iii) All the exponentials in the right-hand side of (1.6) are combined into a single
exponential of a Lie operator by repeatedly using the BCH formula. This is a formula
C = A + B + 1

2 [A, B] + 1
12 [A, [A, B]] + · · · for writing the product exp(A) exp(B) =

(I + A + 1
2A2 + · · · )(I + B + 1

2B2 + · · · ) as an exponential exp(C) (square brackets
denote Lie brackets or commutators).

(iv) The exponential found in (iii) is interpreted as a flow of a vector field f̃h.
Then, the overall method ψh coincides with φh,f̃h

, and therefore f̃h is in fact the
modified vector field of ψh. Once this modified vector field is available, we impose
the condition that it differs from f in terms O(hr) to ensure that the composition
method has order r.

When following this methodology, the expression for f̃h that one finds is a power
series

∑
Cih

i where the Ci are complicated elements of the Lie algebra generated
by the functions F (i) in (1.7), i.e. the Ci are obtained from the functions F (i) by
repeatedly computing linear combinations and Lie brackets. Thus, to annihilate a
given Ci in step (iv), we must first identify a basis of the Lie algebra (which is an
easy standard task if this algebra is free (Bourbaki 1989)) and then decompose Ci

in terms of the chosen basis (which is a complicated job). The order conditions are
obtained by equating to zero the coefficients of the Ci in the chosen basis.

Due to the complexity inherent in the BCH formula itself and to the difficulties
in writing the expressions for the Ci in terms of the chosen basis, the methodology
above is, except for very low orders r, difficult to carry out by hand computation. This
is similar to the situation for Runge–Kutta (RK) methods before the sixties, when
deriving by hand the order conditions for, say, r = 4 was a major task. In the RK
case the introduction (mainly by Butcher (1963, 1964)) of a simple formalism based
on the use of rooted trees has made it possible to easily write the order conditions
for arbitrarily high r (Butcher 1987; Hairer et al. 1993; Sanz-Serna & Calvo 1994).
Our aim in this paper is to introduce a similar formalism for composition methods.

We now briefly describe the contents of the present article. Most of the paper
deals with methods of the form (1.6); the cases of compositions (1.5) and (1.4) are
treated separately in the final §§ 6 and 7. For methods (1.6), we begin by finding
the expansions in powers of h of ψh and φh in terms of rooted trees and elementary
differentials in an RK-like approach (Butcher 1987; Hairer et al. 1993; Sanz-Serna
& Calvo 1994). We impose order greater than or equal to r by demanding that the
expansions of ψh and φh differ in O(hr+1) terms; this leads to an order condition
per rooted tree of order less than or equal to r. Note that the expansion of ψh is
bypassed in the standard Lie methodology outlined above, which works instead with
the expansion of the modified field f̃h; with a Lie-group–Lie-algebra terminology, we
may say that here we work in a Lie group of mappings and the standard methodology
operates in the corresponding Lie algebra. The rooted trees needed here differ from
those used for RK methods in that here, associated with each vertex, there is a
positive integer called the type of the vertex. The expansions of ψh and φh and the
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order conditions are presented in § 3; § 2 contains some preparations. We emphasize
that, in the present approach, the order conditions can be written down very easily,
as their structure is a mere transcription of the structure of the corresponding rooted
trees.

Unfortunately, the order conditions obtained in this way are not all independent;
some of them are fulfilled as a consequence of the fulfilment of others (a similar
situation arises in Owren & Marthinsen (1997)). In § 4 we identify subsets H, called
Hall subsets, of the set of all rooted trees such that the order conditions for the
members of H imply all the remaining order conditions. Therefore, in practice, one
needs to construct only the rooted trees of a Hall set up to the desired order r
(which is an easy job) and then write the associated order conditions (which, as
pointed out before, is a matter of transcribing the structure of the corresponding
graphs). We show that this procedure is optimal in the sense that the number of
order conditions is the same as that one would obtain by following the standard Lie
methodology. Some of the proofs for the results in § 4 are rather difficult and require
ad hoc notation; we have provided those in isolation in § 5. That section may be
skipped, as the final sections do not depend on it.

2. Abstract framework

The general form of the expansion of ψh in (1.6) can be guessed after explicitly
computing the first few terms. We have preferred an alternative approach, introduced
in Murua (1999) for RK and related methods. In this section we review the framework
in Murua (1999); this will be put to use in the next section.

(a) Abstract rooted trees

We consider a countable set T so that associated with each u ∈ T there is an integer
ρ(u) and a mapping F (u) : R

D → R
D. We say that each u ∈ T is a rooted tree and

that ρ(u) and F (u) are, respectively, the order and the elementary differential of
u. At this stage there is no link between the ‘abstract’ rooted trees used here and
the rooted trees studied in graph theory. For simplicity (but this is not necessary
(Murua 1999)) we assume throughout that ρ(u) � 1 for all u ∈ T . It is also assumed
that for each integer � � 1, the set T� = {u ∈ T : ρ(u) = �} is finite.

With each mapping c : T → R, we associate the formal series of powers of the
variable h:

S(c) = id +
∑
u∈T

hρ(u)c(u)F (u) = id +
∞∑

�=1

h�
∑
u∈T�

c(u)F (u). (2.1)

(b) Abstract forests

By definition, a forest ŵ (with m rooted trees) is an unordered m-tuple of rooted
trees ŵ = [u1, . . . , um], ui ∈ T , i = 1, . . . , m. An empty forest [∅] having m = 0 trees
is also considered. The order of ŵ = [u1, . . . , um] (not to be confused with m) is
defined by ρ(ŵ) =

∑
i ρ(ui) and we set ρ([∅]) = 0. The set of all forests is denoted

by T̂ and, for � = 0, 1, 2, . . . , T̂ � represents the subset of T̂ consisting of forests of
order �. While each rooted tree u gives rise to an elementary differential F (u) (a
mapping), with each forest ŵ ∈ T̂ we associate an elementary differential operator
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X(ŵ) that acts on each mapping Φ : R
D → V (V a finite-dimensional vector space)

to give a mapping X(ŵ)Φ : R
D → V . The definition of X(ŵ)Φ is as follows. For

ŵ = [∅], X(ŵ)Φ = Φ. For ŵ = [u1, . . . , um], m � 1, y ∈ R
D,

(X(ŵ)Φ)(y) =
1∏m∗

i=1 μi!
Φ(m)(y)(F (u1)(y), . . . , F (um)(y)).

Here Φ(m)(y) is the mth Fréchet derivative of Φ evaluated at y; this derivative is an
operator that acts on the vectors F (ui)(y) ∈ R

D, i = 1, . . . , m, to yield the element

Φ(m)(y)(F (u1)(y), . . . , F (um)(y)) ∈ V.

The integer m∗, 1 � m∗ � m is the number of distinct elements u∗
i among the uj in

[u1, . . . , um] and, for i = 1, . . . , m∗, μi is the number of uj that are equal to u∗
i .

With each mapping d : T̂ → R, we associate the formal series of differential
operators (cf. (2.1))

Ŝ(d) =
∑
ŵ∈T̂

hρ(ŵ)d(ŵ)X(ŵ) =
∞∑

�=0

h�
∑

ŵ∈T̂ �

d(ŵ)X(ŵ).

(c) Substitution of a series of elementary differentials in a function

With the preceding terminology, if Φ : R
D → V is smooth, then the expansion in

powers of h of the composition Φ ◦ S(c) is given by (Murua 1999)

Φ ◦ S(c) = Ŝ(c′)Φ, (2.2)

where the mapping c′ : T̂ → R is derived from the mapping c : T → R by the rule

c′(ŵ) = Πm
i=1c(ui), ŵ = [u1, . . . , um], c′([∅]) = 1. (2.3)

More precisely, (2.2) means that, for y ∈ R
D,

Φ

(
y +

∑
u∈T

hρ(u)c(u)F (u)(y)
)

=
∑
ŵ∈T̂

hρ(ŵ)c′(ŵ)(X(ŵ)Φ)(y).

3. Order conditions

(a) Preliminaries

We now look for the series expansion of the result of one step of the method (1.6) as
a series S(c) of the form (2.1). It is convenient to seek simultaneously the expansion
of (1.6) and the expansions of the intermediate mappings

χ
(k)
h = ψ

[B]
βkh ◦ ψ

[B]∗
αkh ◦ · · · ◦ ψ

[B]
β2h ◦ ψ

[B]∗
α2h ◦ ψ

[B]
β1h ◦ ψ

[B]∗
α1h , k = 1, 2, . . . , s

χ
(k+1/2)
h = ψ

[B]∗
αk+1hψ

[B]
βkh ◦ ψ

[B]∗
αkh ◦ · · · ◦ ψ

[B]
β2h ◦ ψ

[B]∗
α2h ◦ ψ

[B]
β1h ◦ ψ

[B]∗
α1h , k = 0, 2, . . . , s − 1.

We also set χ
(0)
h = id and note that χ

(s)
h = ψh. The expansions of χ

(k)
h , χ

(k+1/2)
h ,

k = 0, 1, . . . , s − 1 are also assumed to be given by series S(ck), S(ck+1/2) using
the same set of rooted trees T and the same elementary differentials used in the
series S(c) for ψh. Our task is to define T , F (u), c(u) so as to satisfy the following
requirements.
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 on January 3, 2014rsta.royalsocietypublishing.orgDownloaded from 



1084 A. Murua and J. M. Sanz-Serna

(1) The set T is universal, i.e. independent of the differential equation (1.1) being
integrated and of the choices of basic method ψ

[B]
h and coefficients αi, βi in (1.6).

(2) The elementary differentials F (u) depend on the differential equation (1.1) and
on the basic method, but do not depend on the method coefficients αi, βi.

(3) The series coefficients c(u) are functions of the method coefficients αi, βi, but
are independent of the differential equation and of the basic method.
The definitions of χ

(k)
h and χ

(k+1/2)
h imply

S(ck+1) = ψ
[B]
βk+1h ◦ S(ck+1/2), k = 0, 1, . . . , s − 1, (3.1)

so that, if

ψ
[B]
h (y) = y +

∞∑
i=1

hif (i)(y) (3.2)

is the expansion of the basic method (f (1) = f for consistency), then

S(ck+1) =
(

id +
∞∑

i=1

hiβi
k+1f

(i)
)

◦ S(ck+1/2), k = 0, 1, . . . , s − 1,

or

S(ck+1) − S(ck+1/2) =
∞∑

i=1

hiβi
k+1f

(i) ◦ S(ck+1/2).

We now resort to (2.2) to write

S(ck+1) − S(ck+1/2) =
∞∑

i=1

hiβi
k+1

∞∑
j=0

hj
∑

ŵ∈T̂ j

c′
k+1/2(ŵ)X(ŵ)f (i)

=
∞∑

�=1

h�
�∑

i=1

∑
ŵ∈T̂ �−i

βi
k+1c

′
k+1/2(ŵ)X(ŵ)f (i),

and finally use the definition of S in (2.1) to conclude that
∞∑

�=1

h�
∑
u∈T�

(ck+1(u) − ck+1/2(u))F (u) =
∞∑

�=1

h�
�∑

i=1

∑
ŵ∈T̂ �−i

βi
k+1c

′
k+1/2(ŵ)X(ŵ)f (i).

(3.3)
Using this equality we see that, in order to fulfil the three requirements outlined

previously, it is plausible to try to ensure that the following three conditions hold.
(i) There is a one-to-one and onto correspondence between T� and the set of pairs

(i, ŵ), where i is an integer 1 � i � � and ŵ is a forest of order � − i. This condition
ensures that in both sides of (3.3) the inner summations comprise the same set of
indices.

(ii) The elementary differential associated with u = (i, ŵ) satisfies

F (u) = X(ŵ)f (i). (3.4)
(iii) The coefficients ck+1 and ck+1/2 satisfy, for each u = (i, ŵ),

ck+1(u) − ck+1/2(u) = βi
k+1c

′
k+1/2(ŵ), k = 0, 1, . . . , s − 1. (3.5)

In the remainder of this section we show that these three conditions can actually
be enforced.
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Figure 1. Rooted ∞-trees of order up to 3.

(b) Rooted trees

To satisfy the condition (i) above, we define a rooted tree of order � as a pair (i, ŵ),
where i is an integer 1 � i � � and ŵ is a forest of order � − i. This is a recursive
definition because, if � − i > 0, then, by definition, ŵ ∈ T̂ �−i is in turn an ordered
set of rooted trees ui having order � � − i.

The unique forest [∅] of order ρ = 0, gives rise to the unique rooted tree u1,1 =
(1, [∅]) of order ρ = 1. There is then a unique forest of order 1, namely [u1,1]. At ρ = 2,
we find two rooted trees u2,1 = (2, [∅]), u2,2 = (1, [u1,1]) and therefore three forests
[u2,1], [u2,2], [u1,1, u1,1]. Then there are five rooted trees with ρ = 3, namely u3,1 =
(3, [∅]), u3,2 = (2, [u1,1]), u3,3 = (1, [u2,1]), u3,4 = (1, [u2,2]), u3,5 = (1, [u1,1, u1,1]),
etc.

The rooted trees just introduced are best described in terms of graphs with
infinitely many types of vertices. A rooted tree of the form (i, [∅]) is described by a
single vertex of type i (graphically we draw a circle with the number i inside). The
graph that corresponds to the rooted tree (i, ŵ), ŵ = [u1, . . . , um], m > 0, consists of
a vertex of type i (the root) joined by edges to the roots of the graphs of the rooted
trees ui. The graphs of the rooted trees with ρ � 3 are given in figure 1. Note that
the order of a rooted tree is the sum of the types of its vertices. Of course it is the
graphical interpretation just outlined which justifies the terminology ‘rooted tree’
that we have been using all along.

Rooted trees whose vertices are all of one and the same type are standard in the
theory of RK methods (Butcher 1987; Hairer et al. 1993; Sanz-Serna & Calvo 1994).
RK–Nyström methods require rooted trees with two types of vertices (Hairer et
al. 1993; Sanz-Serna & Calvo 1994), and additive RK methods with N parts bring
in rooted trees with N types of vertices, often called rooted N -trees (Araújo et
al. 1997). Along the same lines, we will use the terminology rooted ∞-trees to refer
to the rooted trees defined above. It will be useful later to note that the set T of
the standard RK rooted trees can be identified with the subset of ∞T consisting of
those rooted trees whose vertices are all of type 1. This identification preserves the
order: if u ∈ T then its RK order is by definition the number of vertices it has, which
coincides with the sum of types ρ(u) because of vertices which have type 1.

If u = (i, ŵ) ∈ ∞T , we write i = tp(u), ŵ = op(u) and say that i and ŵ are
respectively the type and the (forest of ) operands of u. The number of vertices in u
is denoted by ν(u).

Phil. Trans. R. Soc. Lond. A (1999)
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(c) Elementary differentials and ∞B-series

To satisfy (3.4), we define, for u ∈ ∞T ,

F (u) = X(op(u))f (tp(u)). (3.6)

This is again a definition recursive with respect to ρ(u) because X(op(u)) involves
the elementary differentials of the rooted trees in the forest op(u).

For the rooted trees in Figure 1, the elementary differentials are successively found
to be (primes denote Fréchet derivatives)

F (u1,1) = f (1), F (u2,1) = f (2), F (u2,2) = f (1)′f (1),

F (u3,1) = f (3), F (u3,2) = f (2)′f (1), F (u3,3) = f (1)′f (2),

F (u3,4) = f (1)′f (1)′f (1), F (u3,5) = 1
2f (1)′′(f (1), f (1)).

The structure of F (u) mimics that of the graph of u in a way that is familiar from
the theory of RK methods; a vertex of type i with m children brings in the mth
derivative of f (i) acting on m vectors. In particular, if u ∈ T , then the elementary
differential defined here coincides (up to the normalization to be discussed presently)
with the one it has in an RK context (Butcher 1987; Hairer et al. 1993; Sanz-Serna
& Calvo 1994).

Note that F (u3,5) includes a factor 1
2 . This is because u3,5 has a non-trivial set of

symmetries; the graph is invariant both by the identity transformation and by the
transformation that swaps the two children of the root. In general, F (u) includes a
normalizing factor 1/σ(u), where σ(u) is the number of symmetries of u (this factor
simplifies many formulae (cf. Butcher & Sanz-Serna 1996).

Each series of the form (2.1) with a set of indices T = ∞T and elementary differ-
entials (3.6) will be called an ∞B-series, thus generalizing the concept of B-series
introduced by Hairer & Wanner (1974). Note that each B-series can be identified
with an ∞B-series where all coefficients of the rooted ∞-trees in ∞T − T vanish.

(d) Elementary weights

Our definitions of rooted trees and elementary differentials and (3.3) clearly imply
(3.5), which can now be rewritten as

ck+1(u) − ck+1/2(u) = β
tp(u)
k+1 c′

k+1/2(op(u)), k = 0, 1, . . . , s − 1 (3.7)

(c′ is found via (2.3)).
Thanks to (3.7) we can compute ck+1(u) when ck+1/2(v) is known for rooted trees

with ρ(v) � ρ(u). To find ck+1/2 from ck, note that, by definition of χ
(k+1/2)
h , χ

(k)
h ,

S(ck+1/2) = ψ
[B]∗
αk+1h ◦ S(ck). (3.8)

We cannot directly proceed as in the derivation of (3.3) because, distinct from the
transition from (1.7) to (1.8), the expansion of ψ

[B]∗
h cannot be easily retrieved from

(3.2) . We rather note that, from (3.8),

ψ
[B]
−αk+1h ◦ S(ck+1/2) = S(ck),

and, by mimicking the steps between (3.1) and (3.3), we conclude that

ck+1/2(u) − ck(u) = −(−αk+1)tp(u)c′
k+1/2(op(u)), k = 0, 1, . . . , s − 1. (3.9)
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This formula and (3.7), along with the initial condition c0(u) = 0 (recall that χ
(0)
h =

id) allow the recursive computation of the coefficients c(u) = cs(u) in the expansion
of ψh; these coefficients are called the elementary weights of the method.

For the rooted trees in figure 1, the elementary weights are easily found to be

c(u1,1) =
s∑

j=1

(αj + βj),

c(u2,1) =
s∑

j=1

(−α2
j + β2

j ),

c(u2,2) =
s∑

j=1

(αj + βj)
j∗∑

�=1

(α� + β�),

c(u3,1) =
s∑

j=1

(α3
j + β3

j ),

c(u3,2) =
s∑

j=1

(−α2
j + β2

j )
j∗∑

�=1

(α� + β�),

c(u3,3) =
s∑

j=1

(αj + βj)
j∗∑

�=1

(−α2
j + β2

j ),

c(u3,4) =
s∑

j=1

(αj + βj)
j∗∑

�=1

(α� + β�)
�∗∑

m=1

(αm + βm),

c(u3,5) =
s∑

j=1

(αj + βj)
j∗∑

�=1

(α� + β�)
j∗∑

m=1

(αm + βm)

=
s∑

j=1

(αj + βj)
( j∗∑

�=1

(α� + β�)
)2

.

In c(u2,2) or c(u3,2), the summation with the set of indices � = 1, . . . , j∗ means that,
at � = j, we use the term α� rather than α� + β�. Similarly, in c(u3,3) we use, at
� = j, the term −α2

� rather than −α2
� + β2

� , etc.
It is easy to realize that the expressions for the elementary weights reflect the

structure of the corresponding rooted trees. Each vertex brings in a summation. The
summation corresponding to the root runs from 1 to s; the summation corresponding
to a vertex V other than the root is ‘starred’ and runs from 1 to the value of the
summation index of the parent of V . Types are translated into powers and an even
power of αj must be accompanied by a minus sign.

(e) The expansion of the true solution and of the local error

It is well known from the theory of RK methods (see Murua (1999) for a derivation
within the present framework) that the expansion of the true flow φh is given by a
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B-series

id +
∑
u∈T

hρ(u) 1
γ(u)

F (u), (3.10)

where the set of indices T is the set of (RK) rooted trees and, for u ∈ T , the density
γ(u) is defined by

γ(u) = ρ(u)Πv∈op(u)γ(v)

(with the standard convention that if op(u) is empty, then the product is 1). As
noted before, the series (3.10) can be seen as the ∞B-series S(λ) whose coefficients
are given by

λ(u) =
1

γ(u)
, u ∈ T,

λ(u) = 0, u ∈ ∞T − T.

⎫⎬
⎭ (3.11)

Then the local error ψh − φh is the ∞B-series with coefficients c − λ, with c the
sequence of elementary weights we computed in the preceding subsection. In partic-
ular we obtain the following important result.

Theorem 3.1. The method (1.6) is of order greater than or equal to r for all
equations (1.1) and all choices of consistent basic method if, for all rooted trees
u ∈ ∞T with ρ(u) � r, the elementary weight c(u) coincides with the weight λ(u)
of the true solution given in (3.11).

For instance, the following eight conditions ensure order greater than or equal
to 3: c(u1,1) = 1, c(u2,1) = 0, c(u2,2) = 1

2 , c(u3,1) = 0, c(u3,2) = 0, c(u3,3) = 0,
c(u3,4) = 1

6 , c(u3,5) = 1
3 (the expressions for the c in terms of the αj and βj were

given above).
For the sake of brevity, we do not discuss here in detail whether the condition

ρ(u) � r ⇒ c(u) = λ(u) in theorem 3.1 is also necessary for the method to have
order greater than or equal to r. Roughly speaking this condition is necessary if
order greater than or equal to r is demanded for all systems (1.1) and all choices of
the basic method. If, however, the basic method is not ‘general’, then the conditions
should not be expected to be necessary. For instance if the basic method is assumed
to have order R > 1, then f (2), . . . , f (R) in the expansion (3.2) coincide with the
coefficients of h2, . . . , hR in the expansion of the true flow and they are therefore
expressible in terms of f ; as a result not all elementary differentials are independent.

4. Independent order conditions

In the preceding section we have seen that each u ∈ ∞T introduces an order condition
for (1.6); the cardinality of ∞T� grows wildly with � and already at � = 3 there
are five rooted trees in ∞T�. It is then fortunate that the order conditions are not
independent. For instance, from the expressions for the elementary weights in terms
of the αi and βi, it is a trivial matter to check that c(u1,1)2 = 2c(u2,2)+ c(u2,1); thus
the order condition c(u2,2) = 1

2 is a consequence of the order conditions c(u1,1) = 1
and c(u2,1) = 0. Our task in this section is to determine the relations among the
elementary weights of (1.6) and to identify a subset of ∞T that yields a set of
mutually independent order conditions.
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Figure 2. Butcher product and merging product.

(a) Relations among the elementary weights

To study the relations that bind the values of the elementary weights we need
some operations in ∞T . If u, v ∈ ∞T we define their Butcher product u · v by the
relations tp(u · v) = tp(u), op(u · v) = op(u) ∪ {v}; this definition extends that
originally suggested by Butcher (1987) for rooted trees in T . The merging product
u×v is defined by tp(u×v) = tp(u)+tp(v), op(u×v) = op(u)∪op(v). The graphical
meaning of these operations is given in figure 2.

The merging product is commutative and associative. The Butcher product is
neither, but possesses the property that, for all u, v, w,

(u · v) · w = (u · w) · v. (4.1)

It will be useful later to observe that, for any u, v,

ρ(u · v) = ρ(u × v) = ρ(u) + ρ(v),
ν(u · v) = ν(u × v) + 1 = ν(u) + ν(v).

After these definitions we have the following result.

Theorem 4.1. Assume that an ∞B-series S(c) is the expansion of a composition
one-step method (1.6). Then

∀u, v ∈ ∞T, c(u · v) + c(v · u) − c(u)c(v) + c(u × v) = 0, (4.2)
∀u, v, w ∈ ∞T, c(w · (u · v)) + c(w · (v · u)) − c((w · u) · v) + c(w · (u × v)) = 0.

(4.3)

Proof . We prove (4.2); the proof of (4.3) is similar.
We begin by noticing that it is enough to show that if the coefficients of two

∞B-series S(a), S(b) are related by

a(u) = b(u) + αtp(u)b′(op(u)), (4.4)

where α is a real constant and u ranges over all possible rooted ∞-trees, then, for
each u, v ∈ ∞T ,

a(u · v) + a(v · u) − a(u)a(v) + a(u × v) = b(u · v) + b(v · u) − b(u)b(v) + b(u × v).
(4.5)

Indeed, the coefficients of the B-series of the identity map vanish identically and
trivially satisfy the relations (4.2); the coefficients for the ∞B-series for the method
(1.6) are, in view of (3.7) and (3.9), linked to the coefficients of the identity by a
chain of relations of the form (4.4).

Let us then prove (4.5). By using (4.4), the definition (2.3) of the coefficient oper-
ation ′, and the definitions of the products · and ×, the left hand-side of (4.5) can
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be rewritten as

b(u · v) + αtp(u)b′(op(u))b(v) + b(v · u) + αtp(v)b′(op(v))b(u)

− (b(u) + αtp(u)b′(op(u)))(b(v) + αtp(v)b′(op(v)))

+ b(u × v) + αtp(u)+tp(v)b′(op(u))b′(op(v)),

an expression that, after cancellation, may be seen to be equal to the right-hand side
of (4.5). �

The constraint (4.2) is reminiscent of a similar one, first discovered in Sanz-Serna
& Abia (1991), in the theory of symplectic RK methods (Sanz-Serna & Calvo 1994).
Constraints similar to (4.3) appear in Calvo & Hairer (1995) in the study of some
particular families of composition methods.

The following theorem is needed later.

Theorem 4.2. The coefficients λ(u) of the ∞B-series that corresponds to the
true flow mapping φh satisfy the constraints (4.2), (4.3).

Proof . A direct proof using the definition of the coefficients λ is straightforward
but long (see the similar proof in Sanz-Serna & Abia (1991)). A shorter indirect proof
is also possible. For any r there is a method of the form (1.6) of order greater than
or equal to r (Sanz-Serna & Calvo 1994, § 13.1). Hence, up to any order r, the values
λ(u) coincide with the values c(u) of a composition method and by the preceding
theorem must satisfy the constraints (4.2), (4.3). �

(b) Independence of the location of the root

It is easy to see how to use (4.2) to reduce the number of order conditions. The
process is virtually identical to that used in the study of the order conditions of
symplectic RK methods (Sanz-Serna & Calvo 1994).

From (4.2) and the corresponding relation for the coefficients λ of the true flow, we
see that the order conditions for the rooted ∞-trees u ·v and v ·u are equivalent if the
order conditions for u, v and u × v hold. We also note that u and v have lower order
than u · v, v · u, while u × v has fewer vertices than u · v, v · u. Therefore, if we write
the order conditions taking first rooted ∞-trees with lower ρ and for each value of ρ
we put first the graphs with fewer vertices, then, by the time we deal with u · v, v ·u,
the order conditions for u, v and u × v may be assumed to hold. Thus, if we define
an equivalence relation in ∞T by declaring each pair u ·v, v ·u to be equivalent, then
it is enough to consider an order condition c = λ per equivalence class, rather than
an order condition per individual rooted ∞-tree. These equivalence classes have an
obvious graphical interpretation: v and w are equivalent if and only if they possess
the same vertices joined by the same edges and just differ in which vertex has been
chosen to be the root. For instance, in figure 1, u3,2 is equivalent to u3,3 and u3,4 is
equivalent to u3,5. Thus each equivalence class corresponds to a free (i.e. unrooted)
∞-tree, a graph where no vertex has been highlighted to be the root.

Furthermore, by setting u = v in (4.2), we see that the order condition for u · u
is a consequence of the order conditions for u and u × u. This shows that we only
need to deal with non-superfluous free ∞-trees, i.e. free ∞-trees that do not contain
rooted ∞-trees of the form u · u.
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Figure 3. Rooted ∞-trees of order less than or equal to 6 in a Hall set.

After this discussion, the number of conditions for order greater than or equal
to 3 has dropped from eight to five (u3,2 and u3,3 are equivalent, u3,4 and u3,5
are equivalent and u2,2 is superfluous). However, we have still to put to use the
constraints (4.3). Dealing with these is more challenging: (4.3) involves three rooted
∞-trees (namely w · (u · v), w · (v · u), (w · u) · v) with the same value of ρ and ν
and cannot be employed to define an equivalence relation (see the comments at the
end of § 2 of Calvo & Hairer (1995)). In the next subsection we deal with (4.2) and
(4.3) simultaneously and we employ an approach essentially different from that used
in the discussion above.

(c) The main result

A subset H ⊂ ∞T is called a Hall set (of rooted ∞-trees) if and only if there is
an order relation < in H in such a way that the following four properties hold:

(i) the order < is total, i.e. if u, v ∈ H, u �= v, then either u < v or v < u;

(ii) the order < is compatible with the function ν in the sense that ν(u) < ν(v)
implies u < v;

(iii) if u ∈ ∞T has ν(u) = 1, then u ∈ H; and

(iv) if u ∈ ∞T has ν(u) > 1, then u ∈ H if and only if u = v · w with v, w ∈ H,
v > w.

The construction of Hall sets is discussed in the next subsection. Figure 3 displays,
for ρ � 6, the rooted ∞-trees in a Hall set; each graph is < than those on its right
and within a column smaller graphs are above larger graphs.

The next theorem is the main result of this paper. The proof is lengthy and tech-
nical, and will be given in § 5.
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Theorem 4.3. Let H be a Hall set. The method (1.6) is of order greater than or
equal to r for all equations (1.1) and all choices of consistent basic method if, for
all rooted trees u ∈ H with ρ(u) � r, the elementary weight c(u) coincides with the
weight λ(u) of the true solution given in (3.11).

(d) Generating Hall sets

In view of properties (i)–(iv) in the corresponding definition, a procedure to gen-
erate a Hall set is as follows. We begin by taking all u ∈ ∞T with ν(u) = 1 and
giving them a total order. While there is of course freedom as to how to order these
graphs, the order defined by

i < j ⇒ (i, [∅]) < (j, [∅]) (4.6)

seems the obvious choice. In a second step, we obtain all u ∈ H with ν(u) = 2 by
forming all products v · w, v ∈ H, w ∈ H, ν(v) = ν(w) = 1, v > w. The graphs
obtained in this second step must then be given an order. Again there is freedom as
to how to order; a simple way is to have v1 ·w1 < v2 ·w2 if either v1 < v2 or v1 = v2,
w1 < w2. The third step computes all u ∈ H with ν(u) = 3 as products v · w, where
v, w ∈ H, ν(v) = 2, ν(w) = 1 (which implies v > w), etc.

When using this procedure, a point should be taken care of: it is possible that
different pairs v1, w1 and v2, w2 give rise to the same product v1 · w1 = v2 · w2. For
instance, with a self-explanatory notation, in figure 3 this happens when v1 = 3 · 1,
w1 = 2, v2 = 3 · 2, w2 = 1. To avoid such repetitions we impose the rule that, for
each u ∈ H with ν(u) � 2, we consider only the decomposition u = v · w, v ∈ H,
w ∈ H, v > w that has w as large as possible; this makes sense because, when
forming a product, all elements in H with fewer vertices have already been ordered.
In the example above and with the order (4.6), we have 1 < 2 and therefore the
decomposition v2 · w2, v2 = 3 · 2, w2 = 1 is not allowed; the same rooted ∞-tree is
obtained as v1 · w1, v1 = 3 · 1, w1 = 2, where now w is maximal. When this rule is
enforced the elements of H with ν � 3 are precisely those of the form

(u · v) · w, u, v, w, u · v ∈ H, u > v, u · v > w, w � v. (4.7)

The requirements u > v and u · v > w arise from property (iv) in the definition of a
Hall set. The condition w � v is imposed because, if u, v, w, u ·v ∈ H, u > v, u ·v > w
and w < v, then we would obtain the element (u · v) · w as (u · w) · v (see (4.1) and
note that u · w > v because ν(u · w) > ν(u) � ν(v)).

The algorithm in § 3.2 of Murua (1999) may be easily adapted to generate all
rooted ∞-trees with ρ � r in a Hall set.

The next theorem counts the number of order conditions by using the Witt formula
from the theory of free Lie algebras (Bourbaki 1989). In the formula, μ(d) denotes
the Möbius function: μ(1) = 1, μ(d) = (−1)j if d is the product of j distinct primes
and μ(d) = 0 otherwise.

Theorem 4.4. A Hall set H ⊂ ∞T contains c(n) rooted trees of order n, where
c(1) = 1 and, for n > 1,

c(n) =
1
n

∑
d|n

μ(d)2n/d.
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Proof . The property (4.7) implies that, in the sense of Bourbaki (1989), H is a
Hall set over the alphabet 1, 2, . . . of all possible types. Then the number of elements
of H with order n equals the dimension of the subspace of elements of degree n of the
free Lie algebra generated by arbitrary symbols F (1), F (2), . . . , where F (i) has degree
i. For n > 1 the dimension of this subspace is given by the Witt formula above, as
shown by McLachlan (1995). �

In particular, c(2) = 1, c(3) = 2, c(4) = 3, c(5) = 6, c(6) = 9, c(7) = 18, c(8) = 30,
c(9) = 56, c(10) = 99.

Corollary 4.5. As a corollary we observe that the number of order conditions
obtained by our approach is the same as that produced by the standard Lie method-
ology given in McLachlan (1995); the reason for this is that in McLachlan (1995) one
deals with the Lie algebra generated by the functions F (1), F (2), . . . in (1.7). This
corollary implies that (4.2), (4.3) provide all the constraints that define, within the
group of all ∞B-series, the subgroup of mappings of the form (1.6).

5. Technical proofs

In this section we prove the main theorem 4.3. Throughout the section, H denotes a
Hall set ⊂ ∞T and we only deal with ∞B-series S(c) whose coefficients c(u) satisfy
the constraints (4.2), (4.3); recall that this covers the series of the true flow and of
any method (1.6).

We say that u ∈ ∞T precedes v ∈ ∞T if either ρ(u) < ρ(v) or ρ(u) = ρ(v),
ν(u) < ν(v) (this relation in ∞T should not be confused with the order relation
< in H). It is convenient to ignore in the formulae (4.2), (4.3) the coefficients of
the rooted ∞-trees that precede others in the same formula (this was done in our
discussion of (4.2) in § 4 b). Thus from (4.2), we write, for each u, v,

c(u · v) ≡ −c(v · u); (5.1)

the symbol ≡ is used to relate two expressions A, B (namely, A = c(u·v), B = c(v·u))
that differ in a function (namely c(u)c(v) − c(u × v)) that is a polynomial in the
coefficients of rooted ∞-trees (namely u, v, u × v) that precede the rooted ∞-trees
(namely u · v, v · u) whose coefficients feature in A and B.

Similarly, (4.3) implies, for each u, v,

c(w · (u · v)) ≡ −c(w · (v · u)) + c((w · u) · v). (5.2)

If A ≡ B, then we say that A and B are equivalent.
Since the Butcher product is not associative, iterated products require the use of

brackets. In order to avoid difficult-to-read expressions with multiple brackets, we
introduce the notations (� � 2)

w1 · (w2 · (· · · (w�−1 · w�))) = w1 ◦ w2 ◦ · · · ◦ w�, (5.3)
(((w1 · w2) · · · · ) · w�−1) · w� = w1w2 · · ·w�. (5.4)

Two special cases of (5.4) will be abbreviated further: we write v� rather than vv · · · v
(� times, � � 1) and wv� rather than wvv · · · v (v features � times as a factor, � � 1).

After all these preliminaries we present five lemmas.
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Lemma 5.1. For all � � 1 and w1, w2, . . . , w�, u, v ∈ ∞T ,

c(w1 ◦ w2 ◦ · · · ◦ w� ◦ v) ≡ (−1)�+1c((w� ◦ w�−1 · · · ◦ w1) ◦ v), (5.5)
c(w1 ◦ · · · ◦ w� ◦ u ◦ v) ≡ −c(w1 ◦ · · · ◦ w� ◦ v ◦ u)

+ c(w1 ◦ · · · ◦ w�−1 ◦ (w� ◦ v) ◦ u). (5.6)

Proof . We establish (5.5) by induction. There is nothing to prove when � = 1. For
� � 2, we successively use the definition of ◦, the induction hypothesis, the constraint
(5.1) and the property (4.1) in order to write

c(w1 ◦ · · · ◦ w� ◦ v) = c(w1 ◦ · · · ◦ w�−1 ◦ (w� ◦ v))

≡ (−1)�c((w�−1 ◦ · · · ◦ w1) ◦ (w� ◦ v))

≡ (−1)�+1c((w� ◦ v) ◦ (w�−1 ◦ · · · ◦ w1))

≡ (−1)�+1c((w� ◦ w�−1 ◦ · · · ◦ w1) ◦ v).

To prove (5.6), we use the definition of ◦, (5.5), (5.2) and (4.1):

c(w1 ◦ · · · ◦ w� ◦ u ◦ v)
= c(w1 ◦ · · · ◦ w� ◦ (u ◦ v))

≡ (−1)�+1c((w� ◦ · · · ◦ w1) ◦ (u ◦ v))

≡ (−1)�c((w� ◦ · · · ◦ w1) ◦ (v ◦ u)) + (−1)�+1c(((w� ◦ · · · ◦ w1) ◦ v) ◦ u)

≡ (−1)�c((w� ◦ · · · ◦ w1) ◦ (v ◦ u)) + (−1)�+1c(((w� ◦ v) ◦ w�−1 ◦ · · · ◦ w1) ◦ u).

We now invoke (5.5) to conclude the proof. �

Lemma 5.2. For all �, m � 1 and w1, . . . , w�, v ∈ ∞T ,

c(w1 ◦ · · · ◦ w� ◦ (vm)) ≡ 1
m

c(w1 ◦ · · · ◦ w�−1 ◦ (w�v
m)). (5.7)

Proof . Induction in m. The case m = 1 is trivial. For m > 1, the definitions of ◦
and vm and (5.6) imply

c(w1 ◦ · · · ◦ w� ◦ (vm))

= c(w1 ◦ · · · ◦ w� ◦ (vm−1) ◦ v)

≡ −c(w1 ◦ · · · ◦ w� ◦ v ◦ (vm−1)) + c(w1 ◦ · · · ◦ w�−1 ◦ (w� ◦ v) ◦ (vm−1)).

By the induction hypothesis,

c(w1 ◦ · · · ◦ w� ◦ (vm)) ≡ − 1
m − 1

c(w1 ◦ · · · ◦ w� ◦ (vvm−1))

+
1

m − 1
c(w1 ◦ · · · ◦ w�−1 ◦ ((w� ◦ v)vm−1)).

After noticing that vvm−1 = vm and (w� ◦ v)vm−1 = w�v
m, the last relation leads to

the result. �

Lemma 5.3. For all m � 1 and v ∈ ∞T ,

c(vm+1) ≡ 0. (5.8)
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Proof . From (5.1) and (5.7),

c(vm+1) = c(vm · v) ≡ −c(v · vm) ≡ − 1
m

c(vvm) = − 1
m

c(vm+1).

�

Lemma 5.4. If � � 1, m � 1, w1, . . . , w� ∈ ∞T , v1, . . . , vm ∈ H with v1 � v2 �
· · · � vm, then

c(w1 ◦ · · · ◦ w� ◦ (v1 · · · vm))

is equivalent to a linear combination of

c(w1 ◦ · · · ◦ w�−1 ◦ (w�v1 . . . vm))

and terms of the form

c(w1 ◦ · · · ◦ w�−1 ◦ (w�u1 . . . uk))

with k < m, ui ∈ H and∑
ρ(ui) =

∑
ρ(vj),

∑
ν(ui) =

∑
ν(vj).

Proof . Once more we resort to induction in m and once more the case m = 1 is
trivial. If m > 1 and v1 = v2 = · · · = vm, the result is true by (5.7). If m > 1 and
v1 < vm, we use (5.6) to write

c(w1 ◦ · · · ◦ w� ◦ (v1 · · · vm)) = c(w1 ◦ · · · ◦ w� ◦ (v1 · · · vm−1) ◦ vm)
≡ −c(w1 ◦ · · · ◦ w� ◦ vm ◦ (v1 · · · vm−1))

+ c(w1 ◦ · · · ◦ w�−1 ◦ (w� ◦ vm) ◦ (v1 · · · vm−1)).

By the induction hypothesis, c(w1 ◦ · · · ◦ w�−1 ◦ (w� ◦ vm) ◦ (v1 · · · vm−1)) is a linear
combination like those considered in the lemma. This leaves us with the coefficient
c(w1 ◦ · · · ◦ w� ◦ vm ◦ (v1 · · · vm−1)), that, by the induction hypothesis, is equivalent
to a linear combination of

c(w1 ◦ · · · ◦ w� ◦ (vmv1 · · · vm−1)) (5.9)

and terms of the form

c(w1 ◦ · · · ◦ w� ◦ (vmu1 · · ·uk)) (5.10)

with k < m − 1, ui ∈ H, ρ(u1) + · · · + ρ(uk) = ρ(v1) + · · · + ρ(vm−1) and ν(u1) +
· · · + ν(uk) = ν(v1) + · · · + ν(vm−1). After noting that vmv1 ∈ H, we can once more
use the induction hypothesis in (5.9) and (5.10) and this leads to the result. �

Lemma 5.5. If m � 1, v1, v2, . . . , vm ∈ H with v1 � v2 � · · · � vm, then the
coefficient c(v1v2 · · · vm) is equivalent to a linear combination of terms of the form
c(u) with u ∈ H, ρ(u) = ρ(v1v2 · · · vm), ν(u) = ν(v1v2 · · · vm).

Proof . We again use induction in m. The case m = 1 is trivial and the case m > 1,
v1 = · · · = vm is given by (5.8). For m > 1, v1 < vm, we write

c(v1v2 · · · vm) = c((v1 · · · vm−1) ◦ vm) ≡ −c(vm ◦ (v1 · · · vm−1)).

We apply lemma 5.4 to reduce c(vm ◦ (v1 · · · vm−1)) to a linear combination and the
proof concludes by using an argument similar to that in the proof of lemma 5.4. �
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After the preceding lemmas, we are almost in a position to prove theorem 4.3. The
idea of the proof is that lemma 5.4 provides a way to reduce the order condition of any
rooted ∞-tree u to the order conditions of ‘simpler’ rooted ∞-trees wi. Here ‘simpler’
means that going from u to the wi reduces the value of a ‘Lyapunov’ function p that
we define next. For u ∈ ∞T with ν(u) = 1 we set p(u) = 0; for u ∈ ∞T with
op(u) = {w1, . . . , w�, v1, . . . , vm}, wi ∈ ∞T − H, vj ∈ H, we set recursively

p(u) = � + p(w1) + · · · + p(w�).

The following two properties are obvious consequences of the definition of p:

(P1) if u ∈ ∞T , v ∈ H, then p(u · v) = p(u);

(P2) if u ∈ ∞T , v ∈ ∞T − H, then p(u · v) = 1 + p(u) + p(v).

By induction we obtain two additional facts:

(P3) if w1, . . . , w� ∈ ∞T , v ∈ ∞T − H, then p(w1 ◦ w2 ◦ · · ·w� ◦ v) = � + p(w1) +
· · · + p(w�) + p(v); and

(P4) if w1, . . . , w� ∈ ∞T , u1, . . . , uk ∈ H, then p(w1 ◦ · · · ◦ w�−1 ◦ (w�u1 · · ·uk)) �
� − 1 + p(w1) + · · · + p(w�).

We need the two further properties, that are easy consequences of the fact that
u · v ∈ H whenever u, v ∈ H, u > v:

(P5) p(u) = 0 if and only if there exist v1, . . . , vm ∈ H, v1 � · · · � vm such that
u = v1 · · · vm; and

(P6) if p(u) �= 0, then there exist w1, . . . , w� ∈ ∞T , v ∈ ∞T −H, such that p(v) = 0
and u = w1 ◦ · · · ◦ w� ◦ v.

The next result is the heart of the matter.

Lemma 5.6. For any u ∈ ∞T , c(u) is equivalent to a linear combination of terms
of the form c(v), with v ∈ H, ρ(v) = ρ(u), ν(v) = ν(u).

Proof . By induction in the value of p. By property (P5), the case p(u) = 0 is
covered by lemma 5.5. If p(u) > 1, then, by (P6), u = w1 ◦ · · ·w� ◦ v, with p(v) = 0,
v ∈ ∞T − H, which, by (P3) leads to

p(u) = � + p(w1) + · · · + p(w�).

By lemma 5.4, c(u) is equivalent to a linear combination of terms c(u∗) that, by
(P4), have

p(u∗) � � − 1 + p(w1) + · · · + p(w�) < p(u)

and may, by the induction hypothesis, be written as linear combinations. �

We are finally ready to prove theorem 4.3. We have to show that c(u) = λ(u) for
each u ∈ ∞T with ρ(u) � r. We do this by induction on ρ(u). The case ρ(u) = 1
is trivial because then u ∈ H. To go from ρ − 1 to ρ > 2 we use a new induction,
this time in ν. If ν = 1 then there is nothing to be proved because H contains all
rooted ∞-trees with one vertex. To go from ν − 1 to ν > 2 vertices we note that, by
the last lemma, c(u) is given by a function F (c(u∗

1), . . . , c(u
∗
� ), c(u

∗∗
1 ), . . . , c(u∗∗

m )),
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where the u∗
i ∈ H have ρ(u∗

i ) = ρ(u), ν(u∗
i ) = ν(u) and the u∗∗

j have either
ρ(u∗∗

i ) < ρ(u), or ρ(u∗∗
i ) = ρ(u), ν(u∗∗

i ) < ν(u). But, due to theorem 4.2, λ(u) =
F (λ(u∗

1), . . . , λ(u∗
� ), λ(u∗∗

1 ), . . . , λ(u∗∗
m )). Then c(u) = λ(u), because c(u∗

i ) = λ(u∗
i ) by

the hypothesis of the theorem being proved and c(u∗∗
j ) = λ(u∗∗

j ) by the induction
hypothesis. �

6. The case of the self-adjoint basic method

In this section we discuss composition methods of the format (1.5). In fact these
methods are the particular case αi = 0, i = 1, . . . , s, of the format (1.6) we have
been discussing. As pointed out in the introduction, there is little point in methods
(1.5) if the basic method is ‘general’: with αi = 0, i = 1, . . . , s, the order conditions∑

(−α2j + β2j
j ) = 0, j = 1, 2, . . . , corresponding to the rooted ∞-trees with one

vertex and even order cannot possibly be enforced. Therefore from now on we make
the assumption that the basic method is self-adjoint. Because we are then dealing
with a basic method that is not ‘general’, not all order conditions in theorem 3.1 are
necessary. Our task is to find a minimal set of order conditions.

We need the following lemma, where the superscript [C] refers to Cholesky, in
analogy with a similar construction familiar in numerical linear algebra (see, for
example, Golub & Van Loan 1989).

Lemma 6.1. A method ψ
[B]
h,f is self-adjoint if and only if there is a second method

ψ
[C]
h,f with

ψ
[B]
h,f = ψ

[C]
h/2,f ◦ ψ

[C]∗
h/2,f .

Proof . The ‘if’ part is trivial. For the ‘only if’ implication, we invoke the modified
vector field to write

ψ
[B]
h,f = φ

h,f̃
[B]
h

= φ
h/2,f̃

[B]
h

◦ φ
h/2,f̃

[B]
h

,

where the second equality comes from the semigroup property of the flow. We define
ψ

[C]
h/2,f = φ

h/2,f̃
[B]
h

and to finish the proof we prove that

ψ
[C]∗
h/2,f = φ

h/2,f̃
[B]
h

.

By the definition of the adjoint method and the semigroup property of flows, we have
that

ψ
[C]∗
h/2,f = (ψ[C]

−h/2,f )−1 = (φ−h/2,f̃
[B]
−h

)−1 = φ
h/2,f̃

[B]
−h

.

The last mapping coincides with φ
h/2,f̃

[B]
h

because for self-adjoint methods the mod-
ified vector fields are an even function of h (cf. (1.7), (1.8)). �

Note that the construction in the proof only yields ψ
[C]
h,f as a formal power series.

This poses no difficulty in our context where we only need to work modulo O(hr+1)
terms.

We use the lemma to rewrite the method (1.5) being studied as

ψh = ψ
[C]
γsh/2 ◦ ψ

[C]∗
γsh/2 ◦ · · · ◦ ψ

[C]
γ2h/2 ◦ ψ

[C]∗
γ2h/2 ◦ ψ

[C]
γ1h/2 ◦ ψ

[C]∗
γ1h/2 (6.1)

and treat (6.1) as a particular instance of the methods (1.6) considered in the pre-
ceding sections. Because (6.1) is not the most general case of (1.6), the elementary
weights will possess some special properties, as we investigate next.
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ρ = 1 1

ρ = 2 −

ρ = 3 3

ρ = 4 3
1

ρ = 5 5
1 1

3

ρ = 6 5
1 1 1 1

3

ρ = 7 7
1 3

3
1 1

5
1 1 1 1

3

ρ = 8 5
3 1 1 3

3 7
1 1 1 1

5
1 1 1 1 1

3

Figure 4. Rooted ∞-trees for compositions of a self-adjoint basic method

Lemma 6.2. If u ∈ ∞T has even tp(u), then the elementary weight of the method
(6.1) vanishes.

Proof . The outermost summation in the expression for c(u) includes the term
−(−γj)tp(u) + γ

tp(u)
j . �

Since λ(u) = 0 if tp(u) = 0, the lemma guarantees that all the order conditions
for the u of even type hold regardless of the choice of the γi.

Theorem 6.3. Let H be a Hall set. The method (6.1) is of order greater than
or equal to r for all equations (1.1) and all choices of a consistent self-adjoint basic
method if, for all rooted trees u ∈ H with ρ(u) � r consisting only of vertices of odd
type, the elementary weight c(u) coincides with the weight λ(u) of the true solution
given in (3.11).

Proof . If the method u ∈ H has ρ(u) = r and a vertex of even type, then, by
the discussion in § 4 b, we may assume that that vertex is the root. Then lemma 6.2
shows that the order condition is satisfied and we apply the main theorem 4.3. �

A set of graphs whose order conditions guarantee order greater than or equal to 8
is given in figure 4; for convenience the graphs have been grouped by order. One may
either form a full Hall set as in figure 3 and weed out the graphs with at least one even
vertex, or alternatively start with the rooted ∞-trees with ν = 1 and odd type and
then recursively form products u · v, u > v. The number of order conditions is again
the same as one would obtain by the standard Lie methodology (McLachlan 1995).
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Here is a list of the order conditions for order greater than or equal to 6.

s∑
j=1

γj = 1,
s∑

j=1

γ3
j = 0,

s∑
j=1

γ3
j

j∗∑
�=1

γ� = 0,
s∑

j=1

γ5
j = 0,

s∑
j=1

γ3
j

( j∗∑
�=1

γ�

)2

= 0,
s∑

j=1

γ5
j

j∗∑
�=1

γ� = 0,
s∑

j=1

γ3
j

( j∗∑
�=1

γ�

)3

= 0.

Here summation with the set of indices � = 1, . . . , j∗ means that at � = j we use 1
2γj

instead of γj . The left-hand side of each order condition is a simple transcription of
the structure of the corresponding graph. It is also useful to compare the simplicity
of the order conditions obtained here with the messy unstructured recursions in
Yoshida (1990); furthermore the approach in Yoshida (1990) assumes symmetry in
the coefficients of (1.5). The expressions in Suzuki (1992) are only slightly more
complicated than those found here, but again Suzuki (1992) operates only under
symmetry of the coefficients and provides no mnemonics in terms of graphs.

Additional reductions in the number of order conditions are possible if in (1.5) the
coefficients are chosen symmetrically γi = γs−i, i = 1, . . . , s. Then the composition
method is itself self-adjoint and hence of even order; as a consequence, one has to
impose explicitly only the conditions for odd ρ.

7. Splitting methods

To end the paper, we briefly consider the family of methods (1.4) for split systems
(1.1), f = f1 + f2. As pointed out by McLachlan (1995), the best way of dealing
with such methods is to choose the simplest split method (1.2) as a basic method to
be used in the format (1.6). This yields a splitting method of the form (1.4), with

ai = αi + βi, i = 1 . . . , s, b0 = α1, bi = αi+1 + βi, i = 1, . . . , s − 1, bs = αs.

Note that, when following this approach, there are 2s free parameters αi, βi and as
a result one does not fully recover the (2s + 1)-parameter family (1.4): fortunately
the methods that are left out are those for which b0 + · · · + bs �= a1 + · · · + as and
these cannot be consistent!

Along the same lines, it is possible to start by taking the self-adjoint Strang
method (1.3) as a basic method in (1.5) and then proceed as in § 6.
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