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The numerical integration of relative equilibrium solutions.
The nonlinear Schrödinger equation
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We analyse different error propagation mechanisms for conservative and nonconservative
time-integrators of nonlinear Schrödinger equations. We use a geometric approach based
on interpreting waves as relative equilibria.

1. Introduction

This paper is devoted to a detailed study of the error growth of numerical time-integrators
for solitary waves of nonlinear Schrödinger equations. It is shown that schemes that
preserve conserved quantities of the equation possess better error propagation mechanisms
than their nonconservative counterparts.

The recent literature includes several analyses (Calvo & Hairer, 1995; Calvo & Sanz-
Serna, 1993; Calvo et al., 1998; Cano & Sanz-Serna, 1997, 1998; Estep & Stuart, 1995;
Hairer & Lubich, 1997) of the quantitative advantages of so-called geometric integrators
(Sanz-Serna, 1997), i.e. of numerical methods that take into account geometric properties
of the system of differential equations being integrated. The references above deal with
ordinary differential equations; partial differential equations have been considered in
Frutos & Sanz-Serna (1997), a paper that takes the Korteweg–de Vries equation as a case
study.

The present paper, following on from Durán (1997), complements the work in Frutos &
Sanz-Serna (1997) in several ways. The most obvious difference is that here we deal with
nonlinear Schrödinger equations rather than with the Korteweg–de Vries equation. A more
significant difference is that we build upon the geometric study in Durán & Sanz-Serna
(1998), thereby obtaining a better insight than was possible in Frutos & Sanz-Serna (1997),
where the geometric mechanisms leading to favourable error propagation were not clearly
identified. Furthermore some technical results on asymptotic expansions of the error, that
were taken for granted without proof in Frutos & Sanz-Serna (1997), are investigated here.

The paper is structured as follows. Section 2 contains background material on the
problem being integrated. The main issues discussed are the interpretation of travelling
waves as Hamiltonian relative equilibria and variational equations. Section 3 includes the
main results and Section 4 is devoted to numerical experiments. As in Durán & Sanz-Serna
(1998), we point out that we have preferred not to include several extensions relative to
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higher-order terms in the expansion of the error or to solutions more general than solitary
waves; in particular for multisoliton solutions of the cubic nonlinear Schrödinger equation,
results similar to those in Frutos & Sanz-Serna (1997), Section 5.3 apply. This paper only
considers discretization in time; fully discrete schemes may be the subject of a future study.

2. The nonlinear Schrödinger equation

2.1 Hamiltonian structure and conserved quantities

We consider nonlinear Schrödinger equations of the form

iut + uxx + f (u) = 0, −∞ < x < ∞, t > 0, (1)

where u = u(x, t) is complex-valued and f is a complex-valued function of a complex
variable. Most of our results concern the particular case

iut + uxx + |u|2σ u = 0, −∞ < x < ∞, t > 0, σ > 0, (2)

which, as is well known, appears in various physical applications, especially when σ = 1, 3
(Kelley, 1965; Zakharov, 1972). We shall not discuss such aspects of (1) as the existence
and uniqueness of solutions of the corresponding initial value problem (cf. Ginibre &
Velo, 1979, 1985; Kato, 1987). For our purposes, however, we need to comment on the
Hamiltonian structure of (1). It is expedient to handle the unknown u in (1) by means
of its real and imaginary parts, v and w respectively. Then, the phase space Ω for the
Hamiltonian formalism consists of pairs (v, w) of sufficiently smooth real functions of the
spatial variable x such that v, w and their derivatives decrease sufficiently fast at infinity.
If the function f satisfies

f (z) = ∂V

∂z
, z ∈ C, (3)

(where z denotes the complex conjugate) for some real-valued potential V , equation (1)
can be written as an infinite-dimensional Hamiltonian system

d

dt

(
v

w

)
= ΞδH, Ξ =

(
0 1

−1 0

)
,

where δ denotes the variational derivative and the energy H is given by the functional

H = 1

2

∫ ∞

−∞
(v2

x + w2
x − V (v, w)) dx . (4)

Note that in the case of (2), the potential is V (z) = |z|2σ+2/(σ + 1).
In the subsequent analysis we shall make use of the symmetry groups (Olver, 1993) of

equation (1). If, in addition to (3), we assume that f satisfies the conditions

f (z) = f (z), z ∈ C, (5)

f (ωz) = ω f (z), ω, z ∈ C, |ω| = 1, (6)
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then (1) admits the two-parameter Abelian (i.e. commutative) group of gauge transforma-
tions and translations

G(α,β)(v(x), w(x))

= (v(x − β) cos α − w(x − β) sin α, v(x − β) sin α + w(x − β) cos α), (7)

as a symmetry group. Here, α and β are real parameters: α measures the angle of rotation
in the complex u-plane and β governs the translation along the x-axis. Note that the one-
parameter group of rotations G(α,0) is the flow of the Hamiltonian vector field g1(u) =
Ξδ I1(u) associated with the Hamiltonian function

I1 = −1

2

∫ ∞

−∞
(v2 + w2) dx,

and the one-parameter group of translations G(0,β) is the flow of the Hamiltonian vector
field g2(u) = Ξδ I2(u) with

I2 = 1

2

∫ ∞

−∞
(vwx − wvx ) dx .

Furthermore, I1 and I2 are conserved quantities of (1). These quantities satisfy the
involution conditions

{Ii , H} = 0, i = 1, 2, (8)

{I1, I2} = 0, (9)

where {·, ·} denotes the Poisson bracket (Marsden & Ratiu, 1994; Olver, 1993),

{F, G} =
∫ ∞

−∞
δFΞδG dx .

The condition (8) means that each quantity Ii is a first integral of (1) and implies in
particular that {Ii , H} = constant, i = 1, 2, which is the condition for H to possess the
symmetry group (7) generated by g1 and g2. Similarly (9) means that I1 (resp. I2) is a first
integral of the Hamiltonian system with Hamiltonian function I2 (resp. I1) and in particular
the flows of Ξδ I1 and Ξδ I2 commute, leading to (7) being Abelian.

2.2 Relative equilibria. Solitary waves

Equation (2) possesses a family of solitary wave solutions (Whitham, 1974) that, when
σ �= 2, can be completely interpreted by means of the symmetry group (7) and the
corresponding relative equilibria (Arnold, 1989; Olver, 1993). The following reduction has
been described in detail in Durán & Sanz-Serna (1998) for finite-dimensional Hamiltonian
systems and can be formally applied to the present case. The phase space Ω is foliated
by level sets {I1 = c1, I2 = c2} of the first integrals I1, I2. These level sets are
manifolds invariant by the flow of (2), i.e. an initial condition on {I1 = c1, I2 = c2}
leads to a solution of (2) that remains on this level set for all values of t . Furthermore,
each orbit {G(α,β)(v, w), α, β ∈ R} of the symmetry group is contained in a level set
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{I1 = c1, I2 = c2} (see (9)). Thus, each of these level sets is foliated by orbits of the group
so that we can construct the corresponding quotient space or reduced phase space, whose
points are orbits in the original phase space. On each reduced phase space (specified by
the values c1, c2), the original Hamiltonian system gives rise to a new Hamiltonian system,
the reduced system (Arnold, 1989; Olver, 1993). The reduced system governs the evolution
in time of the group orbits, i.e. describes the behaviour of u modulo translations in x and
gauge transformations.

Restricting our attention to a fixed level set {Ii = ci , i = 1, 2} we look for relative
equilibria u0 = (v0, w0) ∈ Ω (Arnold, 1989)

δH(u0) − λ1
0δ I1(u0) − λ2

0δ I2(u0) = 0, (10)

Ii (u0) = ci , i = 1, 2, (11)

where λi
0 are real numbers; that is, we look for stationary points u0 ∈ Ω of H restricted to

the level set. The group orbit through a relative equilibrium is an equilibrium of the reduced
system; furthermore the solution of (2) with initial value u0 is simply G(tλ1

0,tλ
2
0)

(u0) (Durán
& Sanz-Serna, 1998) and therefore the time evolution of the initial profile is given by a
translation coupled with a gauge transformation where the parameters α and β that govern
rotation and translation vary linearly with t .

For the case at hand, (10) reads

u′′
0 + |u0|2σ u0 − λ1

0u0 − iλ2
0u′

0 = 0.

After setting u0(x) = ρ(x) exp(iθ(x)) with real functions ρ, θ and integrating, we obtain

ρ(x) = (a(σ + 1))1/2σ (sech σ
√

ax)1/σ , a = λ1
0 − (λ2

0)
2

4
,

θ(x) = λ2
0

2
x .

Furthermore, the constraint (11) leads to

λ1
0 =

(
c1

Lσ

)2σ/(2−σ)

+ c2
2

c2
1

, λ2
0 = 2c2

c1
, Lσ =

∫ ∞

−∞
(σ + 1)1/σ (sech σ x)2/σ dx .

Along with this solution u0, (10)–(11) possess the family of solutions

ϕ(x, x0, θ0) = G(θ0,x0)(u0) = ρ(x − x0) exp(iθ(x − x0) + iθ0); (12)

these are the group orbit through u0 = ρ exp(iθ) and they project onto the same
equilibrium in the reduced phase space. Hence, we obtain the solutions of (2) given by

ψ(x, t, a, c, x0, θ0) = G(tλ1
0,tλ

2
0)

(ϕ)

= ρ(x − ct − x0) exp(i( 1
2 c(x − ct − x0) + θ0))

× exp(i(a + 1
4 c2)t), (13)

(c = λ2
0). This is a four-parameter family of solitary wave solutions with parameters

x0, θ0, c1, c2 (or, equivalently, x0, θ0, a, c). The parameter a determines the amplitude of
the wave and c its velocity, while x0 controls the initial location and θ0 the initial phase.



THE NONLINEAR SCHRÖDINGER EQUATION 239

2.3 Linearization of relative equilibria

In order to study the time behaviour of the errors in the numerical integration of solitary
wave problems for (2), we analyse the properties of solutions of the variational equation of
(2) near the relative equilibrium solution ψ in (13). Denoting by δ the perturbation of ψ ,
the variational equation is

iδt + δxx + σ |ψ |2(σ−1)ψ2δ + (σ + 1)|ψ |2σ δ = 0. (14)

The change of variables δ = G(t (a+c2/4),tc)∆ (as in Durán & Sanz-Serna, 1998, Lemma
2.2) transforms (14) into

i∆t + ∆xx + σ |ϕ|2(σ−1)ϕ2∆ + (σ + 1)|ϕ|2σ ∆ − ic∆x − (a + 1
4 c2)∆ = 0. (15)

(Observe that (15) results from linearizing ut = Ξ(δH(u) − λ1
0δ I1(u) − λ2

0δ I2(u)) around
its equilibrium ϕ.) If we look for ∆ in the form

∆(ξ, T ) = E(ξ, T ) exp

(
i

c

2
√

a
ξ + iθ0

)
,

with ξ = √
a(x − ct − x0), T = at , we can write (15) as (E = F + iG)(

F
G

)
T

= L

(
F
G

)
, L =

(
0 L1

−L2 0

)
, (16)

with the operators L1, L2 given by

L1 = − ∂2

∂ξ2
+ 1 − Rσ (ξ)2σ , L2 = − ∂2

∂ξ2
+ 1 − (2σ + 1)Rσ (ξ)2σ ,

where
Rσ (x) = (σ + 1)1/2σ (sech(σ x))1/σ .

We are also interested in the analysis of the nonhomogeneous version of (14) with
source terms that possess {G(α,β), α, β ∈ R} (or at least {G(t (a+c2/4),tc), t ∈ R}) as a
symmetry group. The changes of variables above lead, in the nonhomogeneous case, to an
equation of the form (

F
G

)
T

= L

(
F
G

)
+

(
S1
S2

)
, (17)

with S1, S2 constant. For the analysis of (16) we consider the space H1 × H1 of pairs of
real functions (V, W )T , V ∈ H1, W ∈ H1 and norm

‖(V, W )T ‖H1×H1 = (‖V ‖2
H1 + ‖W‖2

H1)
1/2.

The next result, due to Weinstein (1985), describes the spectral properties of the
operator L .
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LEMMA 2.1 0 is an eigenvalue of L with geometric multiplicity 2 and algebraic
multiplicity 4. The generalized kernel of L is spanned by the functions

Φ1(ξ) = 1

γ1
(0, Rσ (ξ))T ,

Φ2(ξ) = −1

2γ1

(
1

σ
Rσ (ξ) + ξ R′

σ (ξ), 0

)T

,

Φ3(ξ) = 1

γ2
(R′

σ (ξ), 0)T ,

Φ4(ξ) = 1

2γ2
(0, ξ Rσ (ξ))T ,

where

γ1 =
(

1

σ
− 1

2

)
cσ , γ2 = 1

2
cσ , cσ =

∫ ∞

−∞
R2

σ (ξ) dξ.

More precisely, Φ1, Φ3 ∈ Ker L and LΦ2 = −Φ1, LΦ4 = −Φ3.

Thus, (16) has solutions of the form

c1Φ1 + c2(Φ2 − T Φ1) + c3Φ3 + c4(Φ4 − T Φ3),

that, when expressed in terms of the original variables u, x , t , are seen to be linear
combinations of the partial derivatives of the solitary wave ψ with respect to the parameters
a, c, x0, θ0 and therefore represent perturbations of the solitary wave that can be seen as
the result of changing the parameter values. More precisely, Φ1, Φ3 correspond basically to
the group generators g1, g2 evaluated at the solitary wave, and therefore induce changes in
the location x0 and phase θ0 of the wave. On the other hand, Φ2, Φ4 correspond to changes
in the solitary wave due to changes in the value of I1 and I2, determined by a and c (cf.
Frutos & Sanz-Serna, 1997 ).

Another result, also due to Weinstein, is the key to the analysis of solutions of (17).

LEMMA 2.2 Suppose that 0 < σ < 2 and let M be the subspace M = H1 ×
H1 ⋂

(Kerg L∗)⊥, where L∗ is the adjoint operator of L with respect to the inner product〈(
V1
V2

)
,

(
W1
W2

)〉
=

∫ ∞

−∞
(V1(ξ)W1(ξ) + V2(ξ)W2(ξ)) dξ.

Then H1×H1 � Kerg L ⊕ M. Furthermore, if (F(T ), G(T ))T is a solution of (17) with
initial condition in M, then (F(T ), G(T ))T ∈ M for all T and there exists C > 0 such
that

‖(F(T ), G(T ))T ‖H1×H1 � C‖(F(0), G(0))T ‖H1×H1 . (18)

Since the symmetry group (7) consists of isometries in H1 × H1 (rotations and
translations), the growth with time of solutions of (14) is identical to that of solutions
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of (16). Due to (18), the only source of growth with time of these solutions comes from its
component in the generalized kernel of L .

As far as (17) is concerned, if S = (S1, S2)
T ∈ H1 × H1, using Lemma 2.2, we can

decompose

S = SKerg L + SM,

with SKerg L ∈ Kerg L , SM ∈ M. Taking SKerg L = S(1) + S(2) with S(1) ∈ Ker L and
S(2) in a supplement of Ker L in Ker L2, and due to Lemma 2.1 and the corresponding
projection onto Kerg L , we have

S(1) = α1Φ1 + α3Φ3, S(2) = α2Φ2 + α4Φ4,

with

αi = 〈S, Ψi 〉, 1 � i � 4, (19)

where Ψi , 1 � i � 4 form a basis of the generalized kernel of the adjoint L∗ chosen in
such a way that 〈Φi , Ψj 〉 = δi j . Explicitly

Ψ1(ξ) =
(

0,
1

σ
Rσ (ξ) + ξ R′

σ (ξ)

)T

,

Ψ2(ξ) = (−2Rσ (ξ), 0)T ,

Ψ3(ξ) = (−ξ Rσ (ξ), 0)T ,

Ψ4(ξ) = (0, −2R′
σ (ξ))T .

Observe that Ψ2, Ψ4 are essentially the gradients of the invariants I1, I2 evaluated at the
solitary wave (see Durán & Sanz-Serna, 1998).

In this situation, we have the following result.

LEMMA 2.3 If 0 < σ < 2 and S ∈ H1 × H1, the solution of (17) with zero initial
condition is

(F(T ), G(T ))T = α1T Φ1(ξ) + α2(T Φ2(ξ) − 1
2 T 2Φ1(ξ))

+α3T Φ3(ξ) + α4(T Φ4(ξ) − 1
2 T 2Φ3(ξ))

+
∫ T

0
exp((T − τ)L)SM dτ, (20)

where αi , 1 � i � 4 is given by (19). Furthermore, the integral in (20) remains, for all T ,
bounded in the H1 × H1 norm.

Proof. By using Duhamel’s principle and the preceding remarks, we can write

(F(T ), G(T ))T = T S(1) + (T I + 1
2 T 2L)S(2) +

∫ T

0
exp((T − τ)L)SM dτ,

where I is the identity operator. Replacing S(1) and S(2) by their values we obtain the first
part of the lemma. On the other hand, since L is a closed operator (Weinstein, 1985) and M
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is invariant by L , there exists a unique L−1SM ∈ M, such that we can write the integral
in the form ∫ T

0
exp((T − τ)L)SM dτ = (exp(T L) − I )L−1SM,

and we use Lemma 2.2 to conclude the proof. ✷

Note that the first part of (20) corresponds to the projection of the solution on
Kerg L , with its components in Ker L (including the dominant term (T 2/2)L S(2)) lying
in the direction given by the group generators evaluated at the solitary wave solution;
the component in Kerg L but not in Ker L corresponds to the variation of the relative
equilibrium with respect to the parameters a, c that govern the level manifold. Thus, this
first part represents perturbations in the wave parameters that grow quadratically with time
in the direction of Ker L (i.e. we have quadratic perturbations in the group parameters
x0, θ0) and linearly in the level set parameters a, c. If the source term S is orthogonal to the
gradients of the invariants evaluated at the solitary wave, then S(2) = 0 and the growth is
linear. On the other hand, the bounded behaviour in time of the second part of (20) shows,
for 0 < σ < 2, that the perturbations that do not represent changes in wave parameters can
be controlled in the H1 norm uniformly in time (Weinstein, 1985).

3. Numerical integration of solitary waves

3.1 Error propagation

The preceding results can be applied to analyse the behaviour of approximations to a
solitary wave of the family (13). We focus on semidiscrete (discrete t , continuous x) one-
step integrators for the initial value problem for (2). Such one-step integrators take the
form

U n+1 = χ∆t (U
n), (21)

where ∆t denotes the time step, U n = U n(x) is a numerical solution at time level tn =
n∆t, n = 0, 1, . . . and χ∆t approximates the flow of the equation. Thus, if U 0 = u0, then
U n is an approximation to the value u(tn) of the solution u of (2) with initial condition u0.

The local error at a state u ∈ Ω is, by definition, the difference between the true ∆t-
flow at u and χ∆t (u). If r is the order of the method, then the local error is O(∆tr+1) as
∆t → 0. Taking u0 as the relative equilibrium ϕ given by (12) and if the solution ψ in (13)
is approximated by (21) with U 0 = ϕ, we assume that the local error has an asymptotic
expansion of the form

∆tr+1l(ψ) + ∆tr+1 R(ψ, ∆t), (22)

where l, R are mappings defined in Ω with values in Ω , l is independent of ∆t and
‖R(·, ∆t)‖H1 → 0 as ∆t → 0. We also assume that the mapping χ∆t is invariant
by the one-parameter group {G((a+c2/4)t,ct) : t ∈ R} so that l admits this group as a
symmetry group. Note that this condition is not restrictive, because this group consists of
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rotations and translations and most standard integrators are invariant with respect to linear
transformations (Stoffer, 1995).

As far as the global error U n(x)−ψ(x, tn) is concerned, we suppose that this possesses
an expansion of the form

U n(x) − ψ(x, tn) = ∆tr e(x, tn) + ∆tr q(x, tn, ∆t), −∞ < x < ∞, (23)

where the function e is independent of ∆t and satisfies the corresponding nonhomogeneous
variational equation with source term −il(ψ(t)) and zero initial condition (Cano & Sanz-
Serna, 1997). Moreover, q is a remainder that, for fixed t , tends to zero in the H1 norm as
∆t → 0.

Using Theorem 3.2 of Durán & Sanz-Serna (1998) and the results obtained in
Lemma 2.3 we now state a theorem that describes the asymptotic behaviour in time of
the above approximation to the solitary wave (13) given by (21). The proof is similar to
that of Durán & Sanz-Serna (1998).

THEOREM 3.1 Suppose that (22), (23) hold and χ∆t is invariant by the one-parameter
group {G((a+c2/4)t,ct) : t ∈ R}. If σ < 2, then we have

U n(x) = ψ(x, tn, ã, c̃, x̃0, θ̃0) + ∆trρ(x, tn) + ∆tr Q(x, tn, ∆t), (24)

with

ã = a − α2

γ1a−2+1/2σ
∆tr tn,

c̃ = c + α4

γ2a−3/2+1/2σ
∆tr tn, (25)

x̃0 = x0 − α3

γ2a−1/2+1/2σ
∆tr tn − α4

2γ2a−3/2+1/2σ
∆tr t2

n ,

θ̃0 = θ0 + α1

γ1a−1+1/2σ
∆tr tn − cα3

2γ2a−1/2+1/2σ
∆tr tn

− α4c

4γ2a−3/2+1/2σ
∆tr t2

n + α2

2γ1a−2+1/2σ
∆tr t2

n ,

and αj = 〈−il, Ψj 〉, j = 1(1)4 (see (19)). The function ρ is independent of ∆t and is
bounded in the H1 norm uniformly in time. The function Q is a remainder such that, for
fixed t , ‖Q(·, t, ∆t)‖H1 → 0 as ∆t → 0.

Moreover, if the method (21) satisfies the conditions

〈−il, ∇ Ij (ϕ)〉 = 0, j = 1, 2, (26)

then α2 = α4 = 0.

Thus, this theorem shows that the numerical solution consists of three components:

(i) First, we have a new solitary wave, the so-called modified solitary wave (Frutos
& Sanz-Serna, 1997), whose amplitude and velocity ã, c̃ differ from the corresponding
parameters a, c of the original wave in terms that grow linearly with time, while the
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perturbation of the two other parameters, location and phase, grow quadratically (see x̃0, θ̃0
in (25)). Note that, if the scheme (21) conserves the quantities I1 and I2 then, in particular,
it satisfies the conditions (26) and the quadratic behaviour in time of the parameters of the
modified solitary wave is not present. This is due to the fact that for a scheme preserving
Ii , the leading term of the local error has to be orthogonal to the gradient of Ii at the
original solitary wave and this implies that the coefficients α2, α4 vanish (recall the remarks
preceding Lemma 2.3). In such a ‘conservative’ case, the modified solitary wave keeps the
original amplitude and the parameter c̃ coincides with the original c; the errors x̃0 − x0,
θ̃0−θ0 grow linearly with time. It is also useful to point out that, in the case of a method that
preserves the Hamiltonian (4) and only one of the quantities I1 or I2, a slightly different
argument may be used to reach the same conclusions as in the case where both I1 and I2 are
preserved. Here, the leading term of the local error is orthogonal to the gradients of H and
the quantity I1 or I2 evaluated at the solitary wave; since this wave is a relative equilibrium
(see (10)–(11)), then the gradient of the energy H at the wave is a linear combination of
the gradients of I1 and I2; hence, the leading term of the local error satisfies (26).

(ii) The second term, a complementary term, ∆trρ represents errors of leading order
O(∆tr ) that cannot be interpreted as changes in the parameters of the solitary wave. This
term corresponds to the component of the function e that lies in M (see Lemma 2.2) and
therefore is bounded in the H1 norm uniformly in time (cf. Frutos & Sanz-Serna, 1997).

(iii) Finally, the third term is a remainder of higher order (o(∆tr )).

3.2 The implicit midpoint rule

In this section we prove that the standard midpoint rule satisfies the hypotheses that
were assumed for the analysis in Section 3.1. The material in this section improves in
different ways upon standard analyses (Robinson et al., 1993; Sanz-Serna, 1984) of time
discretizations of nonlinear Schrödinger equations. For instance, we prove convergence in
H1 and the existence of an asymptotic expansion of the error.

First, we define the numerical method. Suppose that in (1) the function f satisfies

f ∈ C2(R2), f (0) = 0, (27)

(note that for (2), the first condition holds for σ > 1/2) and consider the initial value
problem given by (1) with 0 < t � tmax and the initial condition u0. If U n = U n(x)

denotes a numerical approximation to the solution u at time level tn = n∆t, n =
0, 1, . . . , N = �tmax/∆t�, the (semidiscrete) implicit midpoint rule is given by

U n+1 − U n

∆t
= i∂xxU n+1/2 + i f (U n+1/2),

U n+1/2 = U n + U n+1

2
, n = 0, 1, . . . , N − 1, (28)

where we take U 0 = u0. The formulae (28) require the terms U n+1/2 to be in the domain
of the operator i∂xx . Therefore, we say that a vector U = (U 0, U 1, U 2, . . . , U N ) is a
numerical solution of (28) if U satisfies the corresponding equations, with U n ∈ H1 for
n ∈ {0, 1, . . . , N } and U n+1/2 ∈ H3 for n ∈ {0, 1, . . . , N − 1}. Sometimes (Sanz-Serna



THE NONLINEAR SCHRÖDINGER EQUATION 245

& Calvo, 1994) it is convenient to rewrite (28) in terms of the average Z = U n+1/2, that is

Z = U n + i
∆t

2
∂xx (Z) + i

∆t

2
f (Z), n = 0, 1, . . . , N − 1;

at each step, we solve an implicit Euler equation for Z with step size ∆t/2 and obtain the
next level approximation via the extrapolation U n+1 = 2Z − U n (Sanz-Serna & Calvo,
1994).

In order to obtain the main convergence result we employ an argument of consistency
and nonlinear stability (López-Marcos & Sanz-Serna, 1988).

Consistency

For the analysis of the consistency, we define the truncation errors T n, n = 0, 1, . . . , N ,
as the residuals in the theoretical solution u(tn),

T n+1 = u(tn+1) − u(tn)

∆t
− i∂xx

u(tn+1) + u(tn)

2
− i f

(
u(tn+1) + u(tn)

2

)
.

The conditions on the nonlinear term in (27) imply that f is locally Lipschitz as a
mapping in H1 and, using Taylor expansions, it can be easily seen that if the functions
u, utt , uttt , ∂xx utt are bounded in the H1 norm uniformly in time, then

‖T n+1‖H1 = O((∆t)2), ∆t → 0. (29)

Nonlinear stability

To analyse the stability of (28), we consider vectors V = (V 0, V 1, . . . , V N )T and W =
(W 0, W 1, . . . , W N )T for V j , W j ∈ H1, j = 0, 1, . . . , N , V j+1/2, W j+1/2 ∈ H3, j =
0, 1, . . . , N − 1 and residuals ρ = (ρ0, ρ1, . . . , ρN )T , σ = (σ 0, σ 1, . . . , σ N )T defined
by

ρ0 = V 0 − u0,

ρn+1 = V n+1 − V n

∆t
− i∂xx V n+1/2 − i f (V n+1/2),

σ 0 = W 0 − u0, (30)

σ n+1 = W n+1 − W n

∆t
− i∂xx W n+1/2 − i f (W n+1/2),

with n = 0, 1, . . . , N − 1. Here, V and W can be seen as solutions of (28) under
perturbations given by ρ and σ respectively. The stability analysis aims at estimating the
size of V − W in terms of the size of ρ − σ (López-Marcos & Sanz-Serna, 1988).

THEOREM 3.2 Given R > 0, if

max
0�n�N

‖V n‖H1 � R, max
0�n�N

‖W n‖H1 � R, (31)
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then, for ∆t sufficiently small, there exists C = C(tmax, R) > 0 such that

max
0�n�N

‖V n − W n‖H1 � C

(
‖ρ0 − σ 0‖H1 + ∆t

N∑
k=1

‖ρk − σ k‖H1

)
. (32)

Proof. From (30) we have

V n+1 − W n+1

∆t
− V n − W n

∆t

= i∂xx (V n+1/2 − W n+1/2) + i( f (V n+1/2) − f (W n+1/2))

+(ρn+1 − σ n+1), n = 0, 1, . . . , N − 1. (33)

We define en = V n − W n, n = 0, 1, . . . , N . Taking the L2-inner product of V n+1/2 −
W n+1/2 − ∂xx (V n+1/2 − W n+1/2) with (33), integrating by parts and taking the real part
of each term in the resulting expression, we obtain

1

2∆t
(‖en+1‖2

H1 − ‖en‖2
H1)

= Re
[
i〈 f (V n+1/2) − f (W n+1/2), V n+1/2 − W n+1/2〉

+ i〈∂x ( f (V n+1/2) − f (W n+1/2)), ∂x (V n+1/2 − W n+1/2)〉
]

+Re
[
〈ρn+1 − σ n+1, V n+1/2 − W n+1/2〉

+〈∂x (ρ
n+1 − σ n+1), ∂x (V n+1/2 − W n+1/2)〉

]
. (34)

Since (31) holds and f is locally Lipschitz in H1, there exists L = L(R) such that

‖ f (V n+1/2) − f (W n+1/2)‖H1 � L‖V n+1/2 − W n+1/2‖H1 ,

which, along with the inequality

‖V n+1/2 − W n+1/2‖H1 � 1
2 (‖en+1‖H1 + ‖en‖H1),

can be used in (34) to obtain

1

∆t
(‖en+1‖H1 − ‖en‖H1) � L(‖en+1‖H1 + ‖en‖H1) + ‖ρn+1 − σ n+1‖H1 ,

that is

‖en+1‖H1 � 1 + L∆t

1 − L∆t
‖en‖H1 + ∆t

1 − L∆t
‖ρn+1 − σ n+1‖H1 .
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Finally, if we restrict our attention to the values of ∆t for which L(R)∆t < 1/2, we can
estimate

‖en+1‖H1 � 2e2L∆t
(
‖en‖H1 + ∆t‖ρn+1 − σ n+1‖H1

)
, 0 � n � N − 1,

which leads to (32). ✷

Existence of a numerical solution and convergence

By using the preceding results, we can now state the convergence of the method (28) in
the H1 norm. The next theorem also solves the problem of the existence of a numerical
solution.

THEOREM 3.3 Assume the conditions for which (29) holds, set

M = max
0�t�tmax

‖u(t)‖H1

and take R > 0 with R > 4M . Then

(i) (Existence of numerical solution) For ∆t sufficiently small, there exists a unique
solution U of (28) satisfying max0�n�N ‖U n‖H1 < R.

(ii) (Convergence) If un denotes the theoretical solution at time level tn, n =
0, 1, . . . , N , then

max
0�n�N

‖U n − un‖H1 = O(∆t2), ∆t → 0. (35)

Proof. Note first that the operator A = (I − i(∆t/2)∂xx )
−1 exists in H1, maps H1 on H3

and its norm is less than or equal to one. In terms of the average Z = U n+1/2 we can write
(28) as

Z = A

[
U n + i

∆t

2
f (Z)

]
, n = 0, 1, . . . , N − 1.

Our proof is based on a fixed point argument and recurrence. We take U 0 = u0 ∈ H1 and
consider the mapping G0 : H1 → H1,

Z �−→ G0(Z) = A

[
U 0 + i

∆t

2
f (Z)

]
.

Since the norm of A is � 1 and f is locally Lipschitz in H1, then, if ‖Z1‖H1 � R,
‖Z2‖H1 � R, we have

‖G0(Z1) − G0(Z2)‖H1 � ∆t

2
L(R)‖Z1 − Z2‖H1 ,

where L(R) is a Lipschitz constant of f ; hence, for ∆t sufficiently small, G0 is a
contractive mapping and since

‖G0(0)‖H1 � ‖U 0‖H1 = ‖u0‖H1 � M <
R

2
,
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(recall f (0) = 0) there is a unique Z0 ∈ H1 with ‖Z0‖H1 � R such that G0(Z0) = Z0.
In fact, Z0 ∈ H3 (because A maps H1 on H3) so that taking U 1 = 2Z0 − U 0, then
Z0 = U 1/2 and we complete the first part of the recurrence process. Now, suppose we
have obtained U 0, U 1, . . . , U n with U j ∈ H1, 0 � j � n, U j+1/2 ∈ H3, 0 � j �
n − 1, ‖U j‖H1 < R/2, 0 � j � n and U j satisfying (28). The above argument applied
to the mapping

Z �−→ Gn(Z) = A

[
U n + i

∆t

2
f (Z)

]
,

is valid to obtain the next level of approximation U n+1. The uniqueness of the numerical
solution is a consequence of that of the averages U n+1/2. This completes the proof of (i).

On the other hand, the inequality (32) with V n = U n , W n = un leads to (U 0 = u0)

max
0�n�N

‖U n − un‖H1 � C(R, tmax)∆t
n∑

k=1

‖T k‖H1 ,

for ∆t sufficiently small and where T k is the kth component of the local truncation error,
so that the consistency result (29) proves (35). ✷

Asymptotic expansion

We complete the study of (28) with a proof of the existence of an asymptotic expansion
of the numerical solution. This result requires a lemma that investigates the local error in
more detail and that can be easily proved.

LEMMA 3.4 Suppose that f ∈ C2(R2), f (0) = 0 and the solution u of (1) satisfies that
utttt , utttt t and ∂xx uttt t exist and are bounded in the H1 norm uniformly in [0, tmax]. Then
the local truncation error possesses an expansion of the form

T n+1 = ∆t2l(u(tn)) + ∆t4 R(tn, ∆t), 0 � n � N − 1, (36)

where the function l does not depend on ∆t and R is bounded in the H1 norm uniformly
in [0, tmax].

The description of the asymptotic behaviour of the numerical solution needs more
regularity conditions on the nonlinear term f which, in the case of (2), restrict the range of
values of σ to σ � 1.

THEOREM 3.5 Under the conditions of Lemma 3.4 we additionally assume that f ∈
C3(R2) and let e ∈ H1 be the solution of the initial value problem for the nonhomogeneous
variational equation,

iet + exx + f ′(u)e = −il, 0 < t � tmax, (37)

e(0) = 0,
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where l satisfies (36). If the functions ett , ettt , ∂xx ett exist and are bounded in the H1 norm
uniformly in t , 0 � t � tmax, then for ∆t sufficiently small, the numerical solution of (28)
admits an asymptotic expansion of the form

U n(x) = u(x, tn) + (∆t)2e(x, tn) + (∆t)2q(x, tn, ∆t), 0 � n � N ,

where the function q is a remainder that, for fixed t , satisfies

‖q(·, t, ∆t)‖H1 → 0,

as ∆t → 0.

Proof. By setting M = max0�t�tmax ‖u(t)‖H1 and R > 0 with R > 4M , we consider the
numerical solution U given by Theorem 3.3 along with the vector W with components

W n = u(tn) + (∆t)2e(tn), 0 � n � N .

If ∆t is small, ‖W n‖H1 < R, 0 � n � N and the estimate (32) applied to this case leads
to

‖U n − W n‖H1 � C∆t
N∑

k=1

‖σ k‖H1 , 0 � n � N ,

where σ is the residual associated with W,

σ n+1 = W n+1 − W n

∆t
− i∂xx W n+1/2 − i f (W n+1/2)

= u(tn+1) − u(tn)

∆t
+ (∆t)2

(
e(tn+1) − e(tn)

∆t

)

−i∂xx

(
u(tn+1) + u(tn)

2
+ (∆t)2

(
e(tn+1) + e(tn)

2

))

−i f

(
u(tn+1) + u(tn)

2
+ (∆t)2

(
e(tn+1) + e(tn)

2

))
,

with 0 � n � N − 1. Using (36), (37) and Taylor expansions, we can write

σ n+1 = −i f

(
u(tn+1) + u(tn)

2
+ (∆t)2

(
e(tn+1) + e(tn)

2

))

+i f

(
u(tn+1) + u(tn)

2

)
+ i(∆t)2 f ′(u(tn+1/2))e(tn+1/2)

+(∆t)4

[
R(tn, ∆t) + 1

8

∫ 1

0
(1 − s)2ettt

(
tn+1/2 + 1

2∆ts
)

ds

− i

4

∫ 1

0
(1 − s)∂xx ett

(
tn+1/2 + 1

2∆ts
)

ds

]
. (38)
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TABLE 1
Errors with respect to the solitary wave at t = 20

∆t IMR SDIRK3 MCN
2.5E−02 6.9732E−02 1.7030E−01 8.3516E−02
1.25E−02 1.7407E−02 2.2096E−02 2.0847E−02
6.25E−03 4.3498E−03 2.7892E−03 5.2097E−03
3.125E−03 1.0873E−03 3.4962E−04 1.3023E−03

TABLE 2
Errors with respect to the modified solitary wave at t = 20

∆t IMR SDIRK3 MCN
2.5E−02 3.1608E−03 8.1238E−03 3.4323E−03
1.25E−02 7.8869E−04 2.9002E−04 8.5595E−04
6.25E−03 1.9710E−04 1.3656E−05 2.1389E−04
3.125E−03 4.9264E−05 1.2315E−06 5.3463E−05

Now, observe that the part of (38) involving f and f ′ can be written as

f

(
u(tn+1) + u(tn)

2
+ (∆t)2

(
e(tn+1) + e(tn)

2

))
− f

(
u(tn+1) + u(tn)

2

)

−(∆t)2 f ′(u(tn+1/2))e(tn+1/2)

= (∆t)2
∫ 1

0

(
f ′

[
u(tn+1) + u(tn)

2
+ τ(∆t)2

(
e(tn+1) + e(tn)

2

)]

×
(

e(tn+1) + e(tn)

2

)
− f ′(u(tn+1/2))e(tn+1/2)

)
dτ (39)

= (∆t)2
∫ 1

0

(
f ′

[
u(tn+1) + u(tn)

2
+ τ(∆t)2

(
e(tn+1) + e(tn)

2

)]

− f ′(u(tn+1/2))

)
e(tn+1/2) dτ

− (∆t)4

4

∫ 1

0
f ′

[
u(tn+1) + u(tn)

2
+ τ(∆t)2

(
e(tn+1) + e(tn)

2

)]

×
(∫ 1

0
(1 − s)ett

(
tn+1/2 + 1

2∆ts
)

ds

)
dτ,
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FIG. 1. L2 error against t . Solid line: midpoint rule; chain line: SDIRK3. The time steps are ∆t =
1/40, 1/80, 1/160, 1/320. The dashed lines at the bottom show the slopes for linear and quadratic
growth in time.

and the coefficient of ∆t4 is, by hypothesis, bounded in the H1 norm. Finally, the integrand
of the coefficient of ∆t2 in (39) can be expressed in the form(

f ′
[

u(tn+1) + u(tn)

2
+ τ(∆t)2

(
e(tn+1) + e(tn)

2

)]

− f ′(u(tn+1/2))

)
e(tn+1/2)

=
∫ 1

0
f ′′

(
σu(tn+1/2) + (1 − σ)

(
u(tn+1) + u(tn)

2

+τ(∆t)2
(

e(tn+1) + e(tn)

2

)))
(40)

×
[

u(tn+1) + u(tn)

2
+ τ(∆t)2

(
e(tn+1) + e(tn)

2

)

−u(tn+1/2), e(tn+1/2)

]
dσ,
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FIG. 2. L2 error against t . Solid line: MCN; chain line: SDIRK3. ∆t = 1/40, 1/80, 1/160, 1/320.
The dashed lines at the bottom show the slopes for linear and quadratic growth in time.

where the expansion of (u(tn+1) + u(tn))/2 in the brackets on the right-hand side of (40)
and the regularity condition f ∈ C3 lead us to write σ n+1 as an O(∆t4) term. ✷

4. Numerical experiments

4.1 Conservation properties and numerical methods

We consider the well known cubic Schrödinger equation (equation (2) with σ = 1,
see e.g. Robinson et al., 1993; Sanz-Serna, 1984) and three numerical methods. Two of
the schemes considered belong to the family of simply diagonally implicit Runge–Kutta
methods (SDIRK)

γ 0
1 − 2γ γ

1/2 1/2

and correspond to the following values of the parameter γ :
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FIG. 3. L2 error with respect to the modified solitary wave against t . IMR with ∆t = 1/320.

[IMR] γ = 1/2; that is, the implicit midpoint rule, analysed in Section 3.2, with order two;
this method conserves quadratic invariants of the system being integrated (Sanz-Serna &
Calvo, 1994).

[SDIRK3] γ = (3 + √
3)/6. This value of γ , due (independently) to Nørsett and Crouzeix

(see Hairer et al., 1993), gives rise to a third-order method, that is not conservative.

We also consider a third scheme (of order two), which we call MCN, that can be written
as

[MCN]

U n+1 = U n + i∆t[∂xx (U
n+1/2) + F(U n, U n+1)U n+1/2],

U n+1/2 = U n + U n+1

2
,

F(U n, U n+1) = |U n|2 + |U n+1|2
2

.
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FIG. 4. L2 error with respect to the modified solitary wave against t . SDIRK3 with ∆t = 1/320.

The construction of this method is based on ensuring conservation of the Hamiltonian (4)
(Itoh & Abe, 1988; Strauss & Vázquez, 1978).

The implicit midpoint rule preserves the invariants I1, I2 (even in the case of (1) with
hypotheses (3), (5) and (6)) but not the Hamiltonian (4). On the other hand, MCN conserves
I1 and H but not I2 and, finally, SDIRK3 does not conserve any of the three quantities.
This different behaviour with regard to conservation of invariants determined our choice
of the methods, since our aim is to illustrate differences in the long-time behaviour of the
approximations in connection with conservation properties. A comparision between the
efficiency of the methods is outside the scope of our work.

4.2 Numerical results

We present results concerning approximations to the solitary wave (13) with parameters
a = 1 (amplitude

√
2), c = 3, x0 = −10 and θ0 = π/4. To implement the methods, we

use a fully aliased pseudospectral spatial discretization in such a way that, virtually, errors
obtained correspond only to the time dicretization. This was achieved, as in Frutos & Sanz-
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FIG. 5. Midpoint rule with ∆t = 1/20 at t = 10. Modulus of the original solitary wave (solid line),
modified wave (chain line) and numerical solution (crosses).

Serna (1997), by succesively doubling the number of spatial grid-points until a grid was
found for which no further error reduction was possible.

The validity of the hypotheses of Theorem 3.1 was proved in Section 3.2 for the case
of IMR. We have no doubt that similar (but even more tedious) analyses can show that the
other two methods also fulfil the requisite hypotheses.

We first analyse the behaviour in time of the global error of each method. Figure 1
gives, in a log-log scale, the L2 norm of the global error as a function of time up to
tmax = 20, with the solid lines corresponding to IMR and the chain lines to SDIRK3.
Similarly, Fig. 2 compares the time behaviour of global errors corresponding to MCN
(solid lines) and SDIRK3 (chain lines). The step sizes (for the two figures) are ∆t =
1/40, 1/80, 1/160, 1/320. Observe that the distance between parallel lines corresponding
to a given method agrees nicely with the order of convergence, r = 2 for IMR and MCN,
and r = 3 for SDIRK3. This can also be observed in Table 1, which gives L2 errors at the
final time tmax = 20.

Recall that, since IMR conserves I1 and I2, and MCN preserves I1 and H , both
methods satisfy (26) and therefore the perturbations of the parameters of the original
solitary wave grow at most linearly with time. SDIRK3 does not conserve any of the
quantities and in fact, for the leading term l of its local error, 〈−il, ∇ Ij (ϕ)〉 �= 0, j = 1, 2,
so that the corresponding error propagation must be quadratic in time. The slopes of the
lines in Figs 1 and 2 show that for the two second-order methods, IMR and MCN, errors
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FIG. 6. SDIRK3 with ∆t = 1/20 at t = 10. Modulus of the original solitary wave (solid line),
modified wave (chain line) and numerical solution (crosses).

grow like t , while for SDIRK3, they grow like t2 (compare with the lines plotted in the
lower right-hand corner of the figures). This confirms our theoretical results.

Modified errors

To study the structure of the error in more detail, we analyse modified errors, i.e. the
errors of each method with respect to the modified solitary wave given by (24). We
have analytically computed the parameters ã, c̃, x̃0, θ̃0 of the modified solitary wave and
measured the differences U n − ψ(tn, ã, c̃, x̃0, θ̃0), so that we are measuring the size of the
complementary term ∆trρ(·, tn) plus the remainder ∆tr Q(·, tn, ∆t). Table 2 shows, for the
three schemes considered, the modified error at final time tmax = 20. Comparing Tables 1
and 2, we observe two properties shared by the three schemes: first, errors with respect
to the modified solitary wave are much smaller than errors with respect to the original
wave; thus the major component of the error corresponds to the errors in the solitary wave
parameters that determine the modified solitary wave. On the other hand, Figs 3 and 4
illustrate the evolution in time of the modified error for IMR and SDIRK3 (the case of
MCN is similar to that of IMR and will not be discussed as it provides no additional
information) and we can see the bounded behaviour of the complementary term and the
remainder.

Returning to Table 2, note that in the case of IMR, modified errors behave as O(∆t2),
which suggests that, for the values of ∆t considered, the complementary term dominates
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FIG. 7. Midpoint rule with ∆t = 1/20 at t = 10. Real part of the original solitary wave (solid line),
modified wave (chain line) and numerical solution (crosses).

over the remainder; in fact, the remainder is expected to be especially small O(∆t4) (see
(36)) due to the time reversibility of IMR; in contrast, modified errors corresponding to
SDIRK3 do not have an O(∆t3) behaviour so that the complementary term is negligible
both when compared with the whole error U n − ψ(tn, a, c, x0, θ0) and when compared
with the remainder.

The behaviour we have described above can also be observed by plotting the solitary
waves. For instance, Fig. 5 shows, at t = 10, the modulus of the true solitary wave (solid
line), the numerical solution (crosses) and the modified solitary wave, with a time step
∆t = 1/20, for IMR. Figure 6 displays the same information but this time for SDIRK3.
Observe that, in the case of IMR, the modulus of the modified solitary wave keeps exactly
the original profile and travels with a new propagation velocity c − α3∆t2/2 and a new
velocity of the phase, that differs by (α1

√
a/2 − cα3/4)∆t2 from the original one. The

numerical solution essentially behaves like this new solitary wave (compare Tables 1 and
2 again) except for a small change in the amplitude, due to the complementary term. On
the other hand, Figure 6 displays the changes in the amplitude and velocity of the modified
solitary wave for the nonconservative method SDIRK3 and shows the smaller amplitude
(α2 > 0) and velocity of propagation of the modified wave.

It is also of interest to study the evolution of the phase of the wave. Figures 7 and 8
respectively display the real part of three waves (original, modified and ‘numerical’) for
IMR and SDIRK3 and show the variation of the modified wave in terms of the velocity of
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FIG. 8. SDIRK3 with ∆t = 1/20 at t = 10. Real part of the original solitary wave (solid line),
modified wave (chain line) and numerical solution (crosses).

the phase. In the case of IMR, the perturbation associated with the phase is negative and
therefore the velocity of the phase of the modified solitary wave is smaller than that of the
true one. Note that, since the modified velocity of propagation is smaller than the original
one, the motion of the real part of the modified wave is slightly delayed with respect to that
of the true wave; the modified motion is slightly displaced to the left with respect to the
true motion. In contrast, in the case of SDIRK3 (Fig. 8) the displacement is to the right,
due to the velocity of the phase being larger than for the exact case.

Finally, we can also compare the behaviour, in the numerical integration, of the
conserved quantities considered (Frutos & Sanz-Serna, 1997). Figure 9 shows the evolution
of the difference

H(U n) − H(ψ(tn)) = H(U n) − H(U 0), (41)

between the value of the energy (4) at the solitary wave and the discrete version of H at the
numerical solution, from t = 0 to t = 10. Since (4) is a conserved quantity, this difference
also estimates the evolution of H in the numerical integration. Observe that, since IMR
satisfies (26) and the solitary wave is a relative equilibrium (see (10)), the leading term
of its local error is orthogonal to the gradient of H at the wave; this condition and the
conservation of the Hamiltonian by ψ show that the leading term of the global error,
determined by (37), is also orthogonal to that gradient. Therefore (see Frutos & Sanz-
Serna, 1997, Section 2.2) the errors (41) behave as O(∆t4), which can be seen in Fig. 9. In
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FIG. 9. Energy error against t . IMR with ∆t = 1/20, 1/40.
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FIG. 10. Energy error against t . SDIRK3 with ∆t = 1/20, 1/40.

the case of SDIRK3, this additional orthogonality condition is not satisfied and, as Fig. 10
shows, the difference (41) has an O(∆t3) behaviour.
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