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STABILIZING WITH A HAMMER
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We show that, with high probability, the undamped, nonlinear inverted pendulum may
be “stabilized” over bounded time-intervals if subjected to random shocks.
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1. Introduction

This note presents a simple case-study of the possibility of stabilizing oscillators by
means of random impulses.

It is well known that unstable equilibria of linear or nonlinear, damped or
undamped oscillators may become stable and even asymptotically stable when the
system is subject to a vibrating external forcing term (vibrational stabilization in
the terminology of [4]). This fact, oftentimes associated with Kapitza’s name, was
demonstrated experimentally by Stephenson in 1908 for the case of an inverted pen-
dulum and leads to many useful physical applications that include the Nobel-prize
winning Paul trap (see e.g. [9] for a brief historical summary). The case where the
external force is harmonic is of course the easiest to analyze and therefore was the
first to be studied; the Ince–Strutt diagram arose in this way. The possibility of
controlling by vibration unstable oscillators has also received much study, see e.g.
Example 12.3.9 of [3] based on [6].

Stochastic forcing terms (stabilization by noise) have been considered in this
connection at least since the 60s of the last century (see e.g. the bibliography of [11]).
Important contribution are [1,2]. The literature spawned by the original Stepheson
experiment is by now huge and need not be surveyed here; useful references may
be obtained from [7,12].

In this short note, as in [13], the external force is impulsive; more precisely,
the (undamped, nonlinear) oscillator is subject to shocks of fixed amplitude that
take place after random waiting times. Situations where stochastic perturbations
occur via randomly spaced impulses rather than via noise arise in a number of
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applications [13]. Furthermore, shock models have the advantage that they may be
simulated numerically with the integrator of choice for the underlying deterministic
oscillator and do not need numerical techniques for SDEs [8]. In molecular dynam-
ics, impulses are used to keep the simulation at a fixed temperature (Andersen
bath). For constant energy (microcanical) simulations, it has been suggested [5] to
perturb deterministic models by the introduction of noise with a view to turning
the simulation “more ergodic” so that the molecule or system of molecules visits a
larger fraction of the phase space; random impulses like those considered here may
provide a useful way of throwing-in randomness while keeping the deterministic
software being used currently.

Our simple model pendulum problem is described in Sec. 2 and analyzed in
Sec. 3. It will be shown that, provided that the shocks happen frequently, the
inverted pendulum will not fall with arbitrarily high probability over arbitrarily
long, finite time-intervals. Section 4 contains some numerical illustrations and the
final Sec. 5 provides some concluding observations.

2. An Inverted Pendulum with Random Shocks

Even though more general oscillators could be considered without much extra effort,
we limit ourselves to the study of the motion of a pendulum of length � whose
suspension point S is subject to a vertical acceleration a(t) with respect to the
laboratory. If q measures the angle between the rod and the upward vertical and g

denotes the acceleration of gravity, the motion is governed by

d2q

dt2
= �−1(g + a(t)) sin q,

or, after introducing the angular velocity p, by
dp

dt
= �−1(g + a(t)) sin q,

dq

dt
= p. (2.1)

In analogy with [13], we are interested in cases where the acceleration a(t) of S

is given formally by a train of Dirac’s delta functions or, equivalently, the velocity
v(t) of S is a piecewise constant function of t. More precisely, we take

a(t) =
∞∑

n=1

(−1)n2v∗δtn , (2.2)

where v∗ > 0 is a parameter with dimensions of velocity that governs the strength
of the shocks and the tn’s are impulse times, 0 < t1 < t2 < . . . , to be described
presently. Note that (2.2) corresponds to the acceleration of S if, for n = 0, 1, 2, . . . ,

with t0 = 0,

v(t) = v∗, t2n < t < t2n+1, v(t) = −v∗, t2n+1 < t < t2n+2; (2.3)

thus the suspension point moves up and down at a constant speed and reverses its
motion at the shock times tn, n = 1, 2, . . . . (This could perhaps be compared with
Kac’s walk where the reversals occur with probability less than 1.)
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Let F be a probability distribution on the half-line (0,∞) with unit expectation
and variance σ2. The random impulse times tn depend on a (small) parameter τ > 0
and are derived from F by setting tn = tn−1 + τn, n = 1, 2, . . . , where the ran-
dom waiting times τn are mutually independent and have the common distribution
F (·/τ), so that E(τn) = τ and Var(τn) = τ2σ2.

Later, simulations will be carried out over finite intervals 0 ≤ t ≤ T . If N(T )
denotes the largest index n with tn ≤ T , it is well known that when the under-
lying probability distribution F is exponential (leading to the Poisson process for
the number of impulses) E(τN(T )) = T . For general distributions satisfying the
hypotheses above, the same relation holds in the limit:

lim
τ→0

E(τN(T )) = T. (2.4)

(Indeed τN(T ) is asymptotically normal with mean T and variance τσ2T , but
this fact will not be used here.) The particular case where F is degenerate and
concentrated at 1 yields deterministic impulse times tn = nτ .

For a(t) given by (2.2), Eqs. (2.1) can be rewritten, without using the Dirac
delta function, as

dp

dt
= �−1g sin q,

dq

dt
= p, tn−1 < t < tn, n = 1, 2, . . . , (2.5)

p(t+n ) = p(t−n ) + (−1)n2�−1v∗ sin q(t−n ), q(t+n ) = q(t−n ); (2.6)

in this way, along trajectories of the stochastic process, the function q(t) is continu-
ous and p(t) presents jump discontinuities. We emphasize that even though we are
facing a stochastic problem, the numerical simulation of these equations amounts to
a sequence integrations of the standard, deterministic pendulum equation in (2.5),
interspersed with changes (2.6) in the value of p at the impulse times.

It is clear that with the present setup, it is not possible for the random impulses
to stabilize almost surely for 0 ≤ t < ∞ the top-most, q = 0, equilibrium position
of the inverted pendulum cf. [12]: if the waiting times τn are, say, exponentially
distributed, there is a positive probability that the first impulse takes place once
the pendulum has fallen. We shall prove below that it is however possible for the
impulses to keep the pendulum up for arbitrarily long intervals 0 ≤ t ≤ T with
probability arbitrarily close to 1.

3. Analysis

We begin by subtracting away the discontinuities in the angular velocity in (2.6)
by means of the introduction of the new dependent variable

p1 = p − v(t)
�

sin q. (3.1)
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It is perhaps of interest to observe that p1 has a clear physical meaning (see
e.g. [10, 11]): if m denotes the mass of the pendulum bob, the kinetic energy is

Ec =
1
2
m(�2p2 − 2�vp sin q + v2)

and
∂Ec

∂p
= m(�2p − �v sin q),

so that, except for the factor m�2, p1 represents the generalized momentum con-
jugate to the generalized coordinate q. On the other hand, the change of variables
(p, q) → (p1, q) with p1 given by (3.1) also arises as a first step in the application of
the method of averaging to remove the explicit time-dependence of t in (2.1) (see
e.g. Eq. (42) in [9], but there the acceleration a(t) and the velocity v(t) of S are
smooth and deterministic).

In the variables (p1, q), the equations of motion (2.5)–(2.6) become, for t �= tn,

dp1

dt
= −v(t)

�
p1 cos q +

(
g

�
− v∗2

�2
cos q

)
sin q,

dq

dt
= p1 +

v(t)
�

sin q; (3.2)

now both dependent variables are continuous with jumps in the time-derivatives. In
spite of the extra regularity that render it useful for the present analysis, the formu-
lation (3.2) has the disadvantage when compared with (2.5)–(2.6) that the simple
structure dp/dt = Φ(q), dq/dt = p of (2.5) has been lost and, when performing
numerical simulations, this precludes the use of a number of well-known integrators
for oscillatory problems. This is not really important for the simple model problem
considered here but would be in more realistic situations where numerical efficiency
is an issue.

If the expected waiting time τ between shocks is seen as a small parameter,
then v(t) in (2.3) is an O(1) quantity that changes sign rapidly and, in the spirit
of the method of averaging, we may change variables to reduce the magnitude of
the “oscillatory” terms that contain v(t) in (3.2). The new variables (p2, q2) are
formally defined by

p1 = p2 − s(t)
�

p2 cos q2, q = q2 +
s(t)
�

sin q2, (3.3)

where

s(t) =
∫ t

0

v(ζ)dζ (3.4)

is the displacement of the suspension point S. For τ is small, �−1s(t) will be small
due to the oscillatory nature (2.3) of the function v(t) being integrated (see the
lemma below) and then the implicit function theorem guarantees that the change
of variables (3.3) is well defined. (Note that, physically, the smallness of �−1s(t)
means that the elongation of the suspension point is small with respect to the
pendulum length.)
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In the new variables (p2, q2), the equations of motion (3.2) become

dp2

dt
=

(
g

�
− v∗2

�2
cos q2

)
sin q2 + Rp,

dq2

dt
= p2 + Rq, (3.5)

where the residuals Rp and Rq are smooth functions of p2, q2, s(t), v(t)s(t) that
are formally O(s(t)). Thus the pendulum obeys a (time-dependent, stochastic) per-
turbed version of the smooth, deterministic, autonomous differential equations:

dP

dt
=

(
g

�
− v∗2

�2
cosQ

)
sin Q,

dQ

dt
= P. (3.6)

(We note in passing that the same equations are found in the study of the pendulum
stabilization by vibration or noise. There v∗2 represents the average of the square
of the velocity v(t) of the suspension point.)

Of course, the system (3.6) describes the motion of a particle in the so-called
effective potential

V =
g

�
cosQ − v∗2

4�2
cos 2Q, (3.7)

that possesses an absolute minimum at the lowest position of the pendulum Q = ±π

and, for

v∗2/� > g, (3.8)

also a local minimum at Q = 0. When this conditon holds, the topmost position
of the pendulum provides a stable solution of the unperturbed system (3.6). In
order to measure the deviation of the solutions of the system (3.5) — that includes
the O(s(t)) perturbations Rp, Rq — from the solutions of (3.6), we have to obtain
bounds for the displacement s(t) of the suspension point S. In the deterministic case
where the distribution F is concentrated at 1, so that tn = nτ , s(t) is a saw-tooth
function that attains its maximum value v∗τ at the odd-numbered impulse times
t2n−1 and vanishes at the even-numbered t2n (the downward trip of S between
t2n−1 and t2n exactly cancels the upward excursion between t2n−2 and t2n−1). For
genuinely random cases, with σ2 > 0, there is only partial cancellation between the
upward and downward excursions and the following lemma shows, that, as it may
be expected, s(t) behaves like τ1/2.

Lemma 3.1. For arbitrary T > 0 and ε > 0,

E
(

max
0≤t≤T

|s(t)|2
)

≤ 4v∗2(τ2 + 2σ2τE(τN(T ))).

and

P
{

max
0≤t≤T

|s(t)| ≥ ε

}
≤ ε−2v∗2(τ2 + 2σ2τE(τN(T ))).
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Proof. Set sn = s(tn), n = 1, 2, . . . , and note that, from (2.3) and (3.4), sn = v∗ŝn,
with

ŝn = τ1 − τ2 + · · · + (−1)n−1τn,

and that, since s(t) is piecewise linear,

max
0≤t≤T

|s(t)| = max{|sn| : 0 < tn ≤ T }.

The sequences {ŝ2n−1} and {ŝ2n} are martingales that are treated separately.
For odd indices, standard (Doob) inequalities give

E
(

max
1≤k≤n

ŝ2
2k−1

)
≤ 4E(ŝ2

2n−1)

and

P
{

max
1≤k≤n

ŝ2
2k−1 ≥ ε2

}
≤ ε−2E(ŝ2

2n−1),

where, on the right-hand sides,

E(ŝ2
2n−1) = (E(ŝ2n−1))2 + Var(ŝ2n−1) = τ2 + (2n − 1)σ2τ2.

For even indices we proceed similarly, but in that case E(ŝ2
2n) = 2nσ2τ2. We add

the upper bounds of the odd and even cases to get

E
(

max
1≤k≤n

ŝ2
k

)
≤ 4v∗2(τ2 + 2nσ2τ2)

and

P
{

max
1≤k≤n

ŝ2
k ≥ ε2

}
≤ ε−2v∗2(τ2 + 2nσ2τ2).

The result now follows by conditioning to the value n of N(T ).
Even though it would be possible to provide a more detailed description of the

behavior of the stochastic process s(t), the bounds in the lemma are sufficient for
our purposes and we turn to our main result:

Theorem 3.1. Given a solution, p(t), q(t) of the stochastic equations (2.5)–(2.6),
denote by P (t), Q(t) the solution of the deterministic, averaged system (3.6) with
initial values Q(0) = q(0), P (0) = p(0) − �−1v∗ sin q(0). Then there exist constants
C > 0 and τmax such that, for τ ≤ τmax and ε > 0

E
(

max
0≤t≤T

|q(t) − Q(t)|2
)

≤ C(τ2 + σ2τ), (3.9)

P
{

max
0≤t≤T

|q(t) − Q(t)| < ε

}
≥ 1 − Cε−2(τ2 + σ2τ), (3.10)
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and, with p1 defined in (3.1),

E
(

max
0≤t≤T

|p1(t) − P (t)|2
)

≤ C(τ2 + σ2τ),

P
{

max
0≤t≤T

|p1(t) − P (t)| < ε

}
≥ 1 − Cε−2(τ2 + σ2τ).

The constant C depends only on p(0), q(0), �, g, v∗ and T (and is independent of
the values of ε, τ and of the probability distribution F ) and τmax depends on p(0),
q(0), �, g, T, v∗ and F (and is independent of ε, τ).

Proof. In view of (2.4), for small τ (how small depends on T and on the specific
distribution F ), the quantity E(τN(T )) in the lemma is less than, say, 2T . On
the other hand, by the implicit function theorem applied to (3.3), the differences
|p1(t) − p2(t)| and |q(t) − q2(t)| can be bounded, uniformly in 0 ≤ t ≤ T , by a
constant factor of max0≤t≤t |s(t)| and, by standard perturbation results applied to
(3.6), the same can be said for the differences |q2(t) − Q(t)| and |p2(t) − P (t)|.

When the stability condition (3.8) holds, solutions of (3.6) with Q(0) and P (0)
close to 0 remain for all time in a well of the effective potential V . Then the theorem
ensures that, for fixed v∗ and in a given bounded interval 0 ≤ t ≤ T , solutions of
(2.5)–(2.6) with small initial conditions will remain small with high probability,
provided that τ is suitably small.

4. Some Simulations

In all the numerical simulations to be reported, we set � = 0.2 m, g = 9.8 ms−2

and v∗ = 3
√

�g, so that the stability requirement (3.8) is satisfied. For this choice
of parameters, the period 2π

√
�/g of the small oscillations of the (un-shocked)

pendulum around the down-most equilibrium at q = π is ≈ 1s; note also that v∗

is of the order of magnitude of the maximum velocity 2
√

�g attained by the (un-
shocked) pendulum when falling freely after being abandoned near its top-most
position q = 0. The initial conditions are taken throughout to be p(0) = 0 and
q(0) = 0.6.

The simulation in Fig. 1 corresponds to the interval 0 ≤ t ≤ T = 2 with waiting
times τn drawn from the exponential distribution with expectation τ = 0.01. The
upper part of the figure depicts q(t) and the discontinuous p(t) along the sample
path: the shocks have stabilized the pendulum at the top equilibrium, in spite of the
fact that the initial deviation from the upward vertical was rather large. The lower
left corner shows the continuous momentum variable defined in (3.1). When this is
represented against the angle q (bottom right), we obtain a coarse approximation
to the phase portrait of (3.6) near the stable equilibrium at the origin.

Our analysis shows that, if v∗ is kept constant as it is the case in the simulations
presented here, our system converges in the limit τ → 0 to the deterministic system
(3.6). Figure 2 is similar to Fig. 1, but now the impulses are very frequent, τ =
0.01/128, and the graphs of q and p1 as functions of t possess a much smoother
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Fig. 1. A sample path with τ = 0.01.

appearance. For this small value of τ numerical experiments show that, in agreement
with our analysis, the pendulum typically remains near q = 0 for longer time
intervals than it does for coarser choices of τ . However, to produce Fig. 2, we
have experimented with many choices for the initial seed of the random number
generator, so as to obtain a trajectory that shows a remarkable behavior. The
simulation takes place up to T = 4. The pendulum falls down shortly after t = 1,
makes a complete turn around the suspension point S and then starts swinging
around the down-most equilibrium at q = −π. The phase plane (bottom right)
shows clearly that the dynamics of the pendulum with shocks is a perturbed version
of the dynamics of a particle in the (effective) potential (3.7) with wells at 0, ±π.

Given in Fig. 3 is the expectation on the left-hand side of (3.9) when T =
0.1 as a function of τ = 0.01, 0.01/2, 0.01/4, . . . . The expectation is computed
by averaging over 1000 sample paths. There are four choices for the distribution
function F : (1) exponential (variance σ2 = 1), (2) uniform in the interval [0, 2]
(σ2 = 1/3), (3) the discrete distribution with P{1/2} = P{3/2} = 1/2 (σ2 = 1/4),
(4) deterministic (σ2 = 0). The O(τ) behavior guaranteed by (3.9) is clearly borne
out in the three random cases, while the deterministic simulation yields an O(τ2)
behavior, in agreement with the discussion that precedes the lemma (alternatively
set σ2 = 0 in (3.9)). Note additionally that the spacing between the three lines
arising from the random distributions correspond to the ratios 1 : 1/3 : 1/4 between
the variances, as predicted by (3.9).
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Fig. 2. A sample path with τ = 0.01/128.

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

10
0

tau

exponential

uniform

deterministic

discrete

Fig. 3. The expectation of maxt |q(t) − Q(t)|2 as a function of the expected waiting time τ .



February 22, 2008 16:21 WSPC/168-SD 00226

56 J. M. Sanz-Serna

5. Concluding Remarks

The above material may be extended in many directions. For instance, standard
Lyapunov techniques, may be applied to improve the result of the Theorem when
the initial condition is in a well of the effective potential.

In addition to the stabilization by fast vibrations (τ � 1) of small amplitude
(�−1s(t) � 1) considered here and easily analyzed by averaging, one may expect
that there may be additional stable regimes [7, 11]. This issue has not been inves-
tigated.

Finally, it is clear that the format (2.2) for the impulsive acceleration of the
suspension point is not the only possible and other choices should be explored.
Alternative choices, including more parameters, would be particularly helpful in
connection with the study of situations where the impulses happen more and more
frequently and one may expect to obtain a limit system governed by a stochastic
equation. With the choice (2.2) used here, the variance of s(t) behaves essentially as
v∗2τt; thus, unless v∗ is (un-physically) allowed to grow without bound, any limit
with τ → 0 will be deterministic. Furthermore, with the choice (2.2), the process
s(t) is not stationary and therefore does not fit in the framework considered in,
say, [12].
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