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INSTABILITIES AND INACCURACIES IN THE INTEGRATION OF
HIGHLY OSCILLATORY PROBLEMS∗
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Abstract. By means of a two-frequency test problem, we analyze the instabilities and inaccu-
racies that may impair the performance of multiple time steps/split operator integrators in highly
oscillatory situations, such as those encountered in molecular dynamics, astrophysics, or partial dif-
ferential equations describing waves. Considered are the impulse (Verlet-I/r-RESPA) method, the
mollified impulse method, and the reversible averaging integrator. The analysis covers errors in po-
sitions, momenta, and energy.
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1. Introduction. This paper is devoted to an analysis of the dangers of applying
some numerical integrators to highly oscillatory problems of the form

M
d2

dt2
q = f(q),

or, equivalently,

d

dt
p = f(q),

d

dt
q = M−1p.(1)

Here q is a vector of positions or coordinates, p the corresponding vector of momenta,
f the vector of forces, and M a positive-definite, diagonal matrix of masses. This sort
of problem appears frequently in many applications, including molecular dynamics,
astrophysics, particle accelerators, partial differential equations that describe wave
phenomena, etc. We are interested in cases where different time scales coexist in the
solutions of the system (1) and multiple-time-step/split step techniques are used for
the numerical integration ([9, Chapter VIII] and [11, Chapter 10]). All methods con-
sidered in this paper are meant to be used with step lengths chosen to match the slowly
varying components of the solution and not restricted by the presence of components
of very high frequency. In a sense, we are then dealing with a situation analogous to
that encountered in stiff solvers for problems whose solutions have components that
decay at widely different rates.

The methods that we investigate follow the track of the fast oscillations because
they operate under the assumption (see section 2) that the fast components of the
forces may be evaluated efficiently. Therefore the scope of the methods considered here
is essentially different from that of alternative techniques such as the heterogeneous
multiscale method [3], [4], [1], [14] that attempt only to integrate the “macroscale” of
the problem (see also [12]).
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It has been known for a long time [2] that multiple-time-step approaches like those
considered in this paper may lead to instabilities that are due to resonances between
the frequencies present in the problem and the rate at which the solution is sampled
by the numerical method. Furthermore, these schemes, if not used with care, may
yield stable numerical runs that completely misrepresent the true solution (see, e.g.,
[5]). Here we introduce a two-degrees-of-freedom linear test problem to analyze such
instabilities and inaccuracies. Due to the relatively simple structure of the test equa-
tions, it is possible to obtain (perhaps with some help from a symbolic manipulation
program) closed form expressions for all relevant quantities in the numerical schemes
and then to compare them to their counterparts in the true theoretical solution. This
is not very different from the approach taken in section 3 of [8].1

The paper is divided into seven sections with some mathematical proofs rele-
gated to two appendices. Section 2 contains a description of the three methods to be
analyzed: the impulse method [7], [15], the mollified impulse method introduced in
[5], and the reversible averaging integrator from [10]. The test problem is presented
in section 3, and then sections 4, 5, and 6 contain the results of our analysis. The
conclusions of our study are listed in section 7.

Although all our results are mathematically rigorous they are not always presented
in full detail; that would have resulted in too long of a paper.

2. Numerical methods. The three numerical techniques considered in this pa-
per were devised to be applied in possibly nonlinear, realistic problems. We therefore
describe them in a nonlinear setting, but note that the corresponding formulations
become simpler when the problem at hand is linear. In fact, for linear problems the
methods can alternatively be viewed as exponential integrators; see [9, Chapter XIII].

2.1. The impulse method (IM). We begin our study by describing the (Verlet-
I/r-RESPA) impulse method [7], [15], a technique for the numerical integration of (1)
in cases where the forces f can be split into a strong part fs and a weak part fw

d

dt
p = fs(q) + fw(q),

d

dt
q = M−1p,(2)

in such a manner that fw does not contribute any fast modes to the solution and the
reduced problem

d

dt
p = fs(q),

d

dt
q = M−1p(3)

possesses highly oscillatory modes (and perhaps slow modes as well). The idea of tak-
ing advantage of the strong/weak splitting is appealing in situations where integrating
the reduced system is much cheaper than solving numerically the full system. An ex-
ample is provided by cases where the reduced problem may be solved analytically at
a cost that is independent (or almost independent) of the step length. In other cases
the cost of evaluating the weak forces is considerably higher than that of evaluating
the strong forces; those cases include differential equations from molecular dynamics
or astrophysics where the strong forces involve only next-neighbor interactions and
the weak forces comprise interactions between all particles. In these situations the aim

1In the model problem used in [8] the matrix that originates the fast oscillations has been brought
to diagonal form through a change of variables. Here we work with the original dependent variables,
which are, of course, easier to understand in physical terms. Also note that the RAI is not invariant
with respect to changes of variables.



INSTABILITY AND INACCURACY IN OSCILLATORY PROBLEMS 1655

is to sample the weak forces as sparingly as possible and, certainly, at a rate that is
not determined by the periods of the fast motions, i.e., by the stiffness of the reduced
problem.

The IM integrates (2) by interspersing evaluations of the weak forces at intervals
of length h with integrations of the reduced system (3) that may be assumed to be
exact either because they are performed analytically or because, in a multiple-time-
step approach, they are carried out with a time step much shorter than h. If we denote
by pn and qn the numerical approximations to the true solution values of the momenta
p(tn) and coordinates q(tn) at the step point tn = nh, then a step n → n + 1 of the
IM may be described in the following composition or split-step pattern.

Kick: Evaluate the weak force f̄n
w = fw(qn) and then set

pn+ = pn +
h

2
f̄n

w.(4)

Oscillation: Use the h-flow of the reduced problem (3) to advance from (pn+, qn)
to (pn+1−, qn+1). In other words, (pn+1−, qn+1) is obtained by integrating, over a time
interval of length h, the system (3) with initial conditions (pn+, qn).

Kick: Set pn+1 = pn+1− + h
2 f̄

n+1
w with f̄n+1

w = fw(qn+1).
Of course, the force f̄n+1

w at the second kick of the current step coincides with
the force at the first kick of the next step, so that the method essentially consists
of a sequence of oscillations (pn+, qn) → (pn+1−, qn+1) followed by kicks pn+1+ =
pn+1− + hf̄n+1

w ; it is not necessary to compute the vector pn+1 unless output at tn+1

is required.
Clearly, the IM would be exact if fw ≡ 0 so that hopes may be entertained that it

would integrate the full system (2) with errors that are small uniformly in the stiffness
of the problem. Unfortunately, it turns out [5], [13] that the expected O(h2) errors
materialize only if h is small with respect to the smallest period of the reduced system.
Hence the IM suffers from an order reduction in the presence of stiffness.

2.2. Mollified impulse method (MIM). In an attempt to overcome the
shortcomings of the IM, the paper [5] suggested a mollified version that, under suit-
able hypotheses, is able to find the coordinates q with errors that are O(h2), where
the implied error constant depends only on the energy of the solution being found
(and on bounds for fw and its derivatives).

Indeed there is a family of mollified methods rather than a single one; the article
[5] introduced a method for each choice of a weight function, and later [13] the family
grew to include a method for each choice of a pair (ψ, φ) of weight functions. Here a
weight function is a bounded, integrable real-valued function χ(t) that is assumed to
be even χ(−t) ≡ χ(t) and to satisfy∫ ∞

−∞
χ(s)ds = 1.

Note that we do not require χ ≥ 0.
The MIM differs from its “plain” counterpart only in that the force f̄n

w used in
(4) to kick at tn has the more complicated format

f̄n
w = M(qn, h)fw(A(qn, h)).(5)

Here, given qn and h, A(qn, h) represents an average of values of q and M(qn, h)
is a so-called mollifier matrix. The use of A avoids [5] the dangers associated with
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sampling at grid points a quickly varying fw(q(t)), and the role of M is to mimic the
way in which extra external forces contribute to build up the momentum in highly
oscillatory problems. More precisely, for the method defined by the pair of weight
functions (ψ, φ), the averaged value is defined by

A(qn, h) =
1
h

∫ ∞

−∞
q∗(t)φ

(
t

h

)
dt =

∫ ∞

−∞
q∗(hs)φ(s) ds,

where q∗(t) is obtained by solving the reduced problem (3) with initial conditions
q = qn, p = 0. The idea behind the mollification process is not quite as simple. The
plain IM can be seen as an exact integration of the approximation (δ stands for the
Dirac function)

d2

dt2
q = fs(q) +

∑
n

δ

(
t− tn

h

)
fw(qn),

and by the mollification process this “impulsive” formulation is replaced by a less
abrupt version where the weak force acts in a time-distributed, continuous fashion:

d2

dt2
q = fs(q) +

∑
n

ψ

(
t− tn
h

)
f∗n

w(6)

(here f∗n
w = fw(A(qn, h)), n = 0, 1, . . . , are the values of the force to be mollified).

The exact solution of (6) can be obtained by an application of the nonlinear variation-
of-constants formula to the reduced problem, and this involves solving the variational
equation for (3). The mollification matrices M(qn, h) required by the algorithm are
found [5], [13] by numerically implementing this variation-of-constants approach.

In a nutshell, a MIM differs from its plain counterpart in that, at each step, addi-
tional integrations of the reduced problem and its variational equation are performed
in order to build up a mollifying matrix M(qn, h) and an average position A(qn, h)
to be used in (5). Full details on how to implement the MIM may be obtained from
[5], [13].

For a suitably normalized, general class of problems (2) with linear strong forces,
it is proved rigorously in [13] (see also [5], [9], [6]) that a MIM produces errors in the
variables p and q of size O(h) uniformly with respect to the stiffness of the reduced
problem if and only if the mollification weight function satisfies

∞∑
j=−∞

ψ(t− j) ≡ 1.(7)

This amounts to demanding that, if ψ is seen as a basis function to interpolate in
time the values f∗n

w in (6), then the interpolation is exact when the function being
interpolated is constant. Furthermore, when (7) holds, a MIM yields errors in the
coordinates q that are O(h2) uniformly in the stiffness if and only if

∞∑
j=−∞

φ(t− j) ≡ 1.(8)

From Fourier analysis, it is well known that the conditions (7) and (8) are equiv-
alent to the requirements

ψ̂(2πn) = 0, n = ±1,±2, . . . ,(9)
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and

φ̂(2πn) = 0, n = ±1,±2, . . . ,(10)

for the corresponding Fourier transforms ψ̂ and φ̂.
A variety of weight functions have been suggested in the literature; see [5], [8],

[9]. The simplest (in a sense made precise in [13]) is the so-called short weight with
χ(t) = 1 for −1/2 < t < 1/2 and χ(t) = 0 for |t| ≥ 1/2. The corresponding Fourier
transform is the sinc function χ̂(ω) = (2/ω) sin(ω/2).

2.3. A reversible averaging integrator (RAI). Another extension of the
Verlet algorithm to a multiple-time-scale setting was put forward in [10] (see also [11,
section 10.3]). The vector of forces in (1) is not decomposed as in (2); rather, it is
assumed that, due either to the structure of the potential energy or to the relative
size of the different masses involved, the coordinates q may be partitioned into a
set of “slow” variables Q and “fast” variables θ. Then, after denoting by P and μ
the momenta corresponding to the Q and θ variables and introducing the obvious
partitions of the vector f and the diagonal mass matrix M , the system (1) becomes

d

dt
P = fQ(Q, θ),

d

dt
Q = M−1

Q P,(11)

d

dt
μ = fθ(Q, θ),

d

dt
θ = M−1

θ μ.(12)

A step of the algorithm may be described in the following kick/oscillate/kick
pattern:

Kick: Hold the variables Q frozen at the value Qn and integrate the fast system
(12) in a time interval of length h using the initial data (μn, θn). Compute an averaged2

force

fn+
Q = h−1

∫ tn+1

tn

fQ(Qn, θ(t))dt

and use it to kick the slow momentum variable:

Pn+1/2 = Pn +
h

2
fn+

Q .

Oscillate: Now the variables Q, μ, θ are advanced from tn to tn+1. One holds P (t)
frozen at its most recent value Pn+1/2, which, in view of the second equality in (11),
leads to a linearly growing Q(t) = Qn + (t− tn)M−1

Q Pn+1/2. This formula for Q(t) is
used to compute Qn+1 and also taken to (12), which can then be integrated over the
interval tn ≤ t ≤ tn+1 to advance the variables μ and θ from (μn, θn) to (μn+1, θn+1).

Kick: The step is completed by updating P from Pn+1/2 to Pn+1 with the help
of a new kick. To ensure the reversibility3 of the overall algorithm one proceeds in a

2As suggested in [10], more general averages may be considered, but this possibility has not been
explored by us.

3The IM and MIM are also reversible. The reversibility of the IM is an almost obvious consequence
of the kick/oscillation/kick pattern. The situation for the MIM is more subtle; reversibility is obtained
because the required auxiliary integrations of the reduced problem use an “artificial” initial condition
p = 0, and therefore A and M are not changed by a time reversal. The RAI builds on the partitioning
of the variables to achieve reversibility without artificially setting to zero the initial value of the fast
momenta in the auxiliary integration used to average the force.
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symmetric fashion: i.e., (12) is integrated, with Q frozen at Qn+1 backwards in time
from tn+1 to tn using the “final” data μn+1, θn+1, and the values of θ obtained in
this way are used to average the slow forces fQ before kicking.

The error behavior of this reversible method does not appear to have been inves-
tigated in the literature.

3. A test problem. If ω > 0 denotes a parameter and α is a constant, 0 < α <
2, then we study the equations

d

dt
p1 = −q1 + ωα(q2 − q1),

d

dt
q1 = p1,

d

dt
p2 = − ωα(q2 − q1),

d

dt
q2 = ω2−αp2,

i.e., the Hamiltonian system corresponding to the Hamiltonian function

H = T + V, T =
1
2
p2
1 +

ω2−α

2
p2
2, V =

1
2
q21 +

ωα

2
(q2 − q1)2.(13)

These equations may describe the oscillations of a mechanical system involving
two material points; the first, with unit mass, is attached to a rigid wall through
a massless spring with unit elastic constant and the second, with mass ω−2+α, is
linked to the first through a massless spring with elastic constant ωα. The system is
constrained to move along a straight line; the coordinates qi measure the displacements
of the masses from their equilibrium positions and pi are the corresponding momenta.
The value ofH gives the total mechanical energy and is, of course, a conserved quantity
along solutions of the system.

We are primarily interested in the case where ω � 1 so that the spring joining
both masses is strong and the second mass is light; as will be shown below, the
system then has fast oscillations whose frequency is ≈ ω. The constant α determines
the relative contributions of the strong spring and the light mass to the existence of
fast oscillations. When α is near 0, the fast oscillations are due to the smallness of the
second mass; for α near 2 the system is rapidly oscillatory due to the stiffness of the
spring. The intermediate case α = 1 was used in the original paper [10] and again in
[11] as a model problem for the behavior of the RAI.

Before undertaking the study of the numerical integrators presented in section 2,
we investigate in some detail the nature of the true solutions of the model problem.
These mathematical details play an important role later in analyzing the integrators,
but are, of course, not needed at all to obtain the numerical solutions themselves.

By looking for normal modes where both masses oscillate with a common fre-
quency, we find the four particular solutions given by (rows correspond to the variables
p1, q1, p2, q2 in this order)⎡⎢⎢⎢⎣

cos(Ω−t)
Ω−1

− sin(Ω−t)
ξ− cos(Ω−t)

(1 + ξ−ω−αΩ2−)Ω−1
− sin(Ω−t)

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

− sin(Ω−t)
Ω−1

− cos(Ω−t)
−ξ− sin(Ω−t)

(1 + ξ−ω−αΩ2−)Ω−1
− cos(Ω−t)

⎤⎥⎥⎥⎦ ,(14)
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Table 1

Upper part: Oscillation amplitudes for the variables pi and qi in the normal modes. Lower part:
Energy values in the normal modes.

Slow modes Fast modes

p1 O(1) O(ω−1+α/2)

q1 O(1) O(ω−2+α/2)

p2 O(ω−2+α) O(ω−1+α/2)

q2 O(1) O(ω−α/2)

p1 + p2 O(1) O(ω−3+α/2)

q2 − q1 O(ω−2) O(ω−α/2)
H O(1) O(1)

Hweak O(1) O(ω−2+α)
Hstrong O(ω−2+α) O(1)

and

ω−1+α/2

⎡⎢⎢⎣
(−1 + ξ+) cos(Ω+t)
ξ+Ω+ sin(Ω+t)

cos(Ω+t)
(ω−α + ξ+)Ω+ sin(Ω+t)

⎤⎥⎥⎦ , ω−1+α/2

⎡⎢⎢⎣
−(−1 + ξ+) sin(Ω+t)
ξ+Ω+ cos(Ω+t)
− sin(Ω+t)

(ω−α + ξ+)Ω+ cos(Ω+t)

⎤⎥⎥⎦ ,(15)

where Ω−, Ω+ (Ω− < Ω+) are the two nonnegative roots of the characteristic equation

Ω4 − (ω2 + ωα + 1)Ω2 + ω2 = 0

and

ξ− = Ω−2
− − 1, ξ+ = (1 − Ω2

+)−1.

The solutions (14) and (15) have been scaled to ensure that for each of them the
energy H in (13) remains bounded as ω → ∞.

After solving the characteristic equation and expanding in negative powers of the
parameter ω, we find the asymptotic behavior of the frequencies,

Ω− = 1 − 1
2
ω−2+α +O(ω−4+2α), ω → ∞,(16)

Ω+ = ω +
1
2
ω−1+α +O(ω−3+2α), ω → ∞,(17)

and of the small coefficients ξ±:

ξ− = +ω−2+α +O(ω−4+2α), ω → ∞,(18)

ξ+ = −ω−2 +O(ω−4+α), ω → ∞.(19)

In view of (16) and (17), for large ω the solutions in (14) represent slow modes
with frequency ≈ 1 and the solutions in (15), with frequency ≈ ω, are fast modes.
The estimates (18) and (19) may be used to find the oscillation amplitudes of the
dynamic variables pi and qi (see Table 1). In a slow mode, the elongation q2 − q1 of
the strong spring is negligible and the system almost behaves as if both masses were
joined by a rigid, massless rod driven by the soft spring. For the fast modes, q1 is
much smaller than q2: the small mass moves driven by the strong spring (which stores
an O(1) potential energy V ) while the weak spring plays little role (the smallness of
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its elongation limits its potential energy to O(ω−4+α)). Also note that in a fast mode
p1 and p2 almost cancel each other; the masses move in opposition of phase and the
lightness of the second mass, relative to the first, is compensated by the fact that it
undergoes much wider oscillations.

The lower part of Table 1 displays the values of the total energy H in the slow
and fast modes, as well as those of the energy

Hweak =
1
2
p2
1 +

1
2
q21(20)

in the subsystem consisting of the first mass and the weak spring and the energy

Hstrong =
ω2−α

2
p2
2 +

ωα

2
(q2 − q1)2(21)

in the subsystem consisting of the light mass and the strong spring. We emphasize
that Hweak and Hstrong are not conserved quantities of our system.

The most general solution with H = O(1) is, of course, obtained by forming linear
combinations of the four normal modes with coefficients of size O(1), i.e., is of the
form

u(t) = PGc,(22)

where u(t) is the solution vector, the entries of c are the weights in the linear combi-
nation, G represents the rotation matrix

G = G(t;ω) =

⎡⎢⎢⎢⎣
cos(Ω−t) − sin(Ω−t) 0 0
sin(Ω−t) cos(Ω−t) 0 0

0 0 cos(Ω+t) − sin(Ω+t)
0 0 sin(Ω+t) cos(Ω+t)

⎤⎥⎥⎥⎦ ,
and P = P(ω) is given by

P =

⎡⎢⎢⎢⎣
1 0 (−1 + ξ+)ω−1+α/2 0
0 Ω−1

− 0 ξ+Ω+ω
−1+α/2

ξ− 0 ω−1+α/2 0
0 1 + ξ−ω−αΩ− 0 (ω−α + ξ+)Ω+ω

−1+α/2

⎤⎥⎥⎥⎦ .
Finally, the flow of the system is obtained by replacing in (22) the vector of

coefficients c by its expression in terms of the initial condition:

u(t) = Φ(t;ω)u(0) = PG(t;ω)P−1u(0).(23)

Thus the eigenvalues of the matrix Φ(t;ω) are λ = exp(±iΩ±t) and the corresponding
eigenspaces are determined by P .

The numerical methods described in section 2 replace the true evolution (23) by
a time-discrete counterpart

un = Φ̃(h;ω)nu0,(24)

where the (method-dependent) propagator matrix Φ̃ advances the solution over a
single time step. When the propagator possesses eigenvalues of unit modulus, it can
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be factorized in the form Φ̃(h;ω) = P̃G̃(h;ω)P̃−1, where G̃(h, ω) is a rotation matrix
that approximates G(h, ω) and P̃ is an approximation to P . Therefore, in that case,
the numerical process (24) contains, in an implicit way, a discrete version of (23) of
the form

un =
(
P̃G̃(h;ω)P̃−1

)n

u0 = P̃G̃(h;ω)nP̃−1u0 = P̃G̃(nh;ω)P̃−1u0.(25)

4. An analysis of the RAI. As pointed out before, the instance α = 1 of
the test problem in section 3 was considered in the paper [10] (where the RAI was
introduced) and, later, also in [11]. As in those publications, we apply the RAI with
the obvious choice Q = q1 and θ = q2.

4.1. Stability. The expression of the RAI propagator as a function of h and ω
is forbiddingly complex and need not be reproduced here (for α = 1 it may be seen
in [10]). The corresponding characteristic equation turns out to be friendlier and is
given by

λ4 − aλ3 + bλ2 − aλ+ 1 = 0,(26)

where

a = 2 + 2c− h2 − s2ωα−2, b = 2 + 4c− 2ch2 − 2s2ωα−2,

with

c = cos(ωh), s = sin(ωh).

The symmetry of the coefficients in (26) ensures that its roots appear in pairs λ, λ−1,
as befits a reversible integrator.

For a stable integration, where un remains bounded as n increases, we require
that the eigenvalues of the propagator Φ̃ have modulus = 1 and (if they are multi-
ple) possess nondefective eigenvectors. The proof of the following result is given in
Appendix A.

Proposition 1. For the test problem, the condition

h < 2
√

1 − ωα−2(27)

guarantees the stability of the RAI. More precisely, if this condition holds, then we
have the following:

• For ωh 	= kπ, k = 1, 2, . . ., the RAI propagator has four distinct nonreal
eigenvalues of unit modulus.

• For ωh = (2k − 1)π, k = 1, 2, . . ., the propagator has a nondefective double
eigenvalue λ = −1 and a pair of (nonreal) complex-conjugate eigenvalues of
unit modulus.

• For ωh = 2kπ, k = 1, 2, . . ., the propagator has a nondefective double eigen-
value λ = 1 and a pair of (nonreal) complex-conjugate eigenvalues of unit
modulus.

In the limit ω → ∞, the light mass and the stiff spring disappear from our mechan-
ical system and it is good news that, correspondingly, the condition (27) converges
to the stability requirement h < 2 of Verlet method applied to the “slow” harmonic
oscillator with Hamiltonian (20). Thus the stability limit of the RAI method is de-
termined only by the slow motion, a favorable property discovered experimentally in
[10] for the case α = 1 and not shared by the IM or the MIM.
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Fig. 1. Behavior of the argument of the eigenvalues of the true flow (top) and RAI propagator
(bottom) as functions of the step length h with ω fixed.

In Figure 1, where4 α = 1, ω = 10, we have depicted, as functions of h, the
arguments of the four eigenvalues of the true flow Φ(h;ω), and their counterparts in
the RAI propagator Φ̃(h;ω). Angles have been reduced to the interval [−π, π]. For
h = 0 the propagator and the flow are the identity, the four eigenvalues coalesce at
λ = 1, and the corresponding arguments coalesce at 0. As h increases, the pair of
fast eigenvalues move rapidly away from 1 and for h ≈ π/ω they cross at λ = −1
(argument ±π). As h approaches the neighborhood of 2π/ω, the fast eigenvalues of
the true flow return to the starting point λ = 1 after having completed a full turn
around the unit circle | λ |= 1; in such a turn each of the two fast eigenvalues has
met and crossed a slow eigenvalue. For the RAI propagator (as noted in [10]) such
eigenvalue crossings do not take place.

4.2. Order reduction. The analysis of numerical methods usually involves the
study of their behavior when they are applied with h→ 0 to a given problem. Here the
study of the limit h → 0 with ω fixed would yield little information on the different
methods because they are meant to be used when h is not small relative to the period
2π/ω of the fast oscillation. We rather consider the limit process

h→ 0, ω → ∞, hω = η > 0,(28)

where η is a constant. Thus the problem to which the methods are applied changes
as h is decreased. We also assume that the initial conditions are chosen in such a way
that, in the limit (28), the energy H of the solutions remains bounded by a constant
independent of h and ω.

We have integrated the test problem with α = 1/2, 1, 3/2, initial conditions cor-
responding to each of the four normal modes in (14) and (15) and several values of

4We have chosen a not very high value of ω to obtain a clean figure where different branches
appear clearly apart from each other. Higher values of ω do not alter the topology of the eigenvalue
crossings.
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Table 2

Experimental orders of convergence for the RAI.

ωh �= 2kπ ωh = 2kπ
α = 1/2 α = 1 α = 3/2 α = 1/2 α = 1 α = 3/2

p1 5/4 1/2 1/4 3/4 1/2 1/4
q1 3/2 1 1/2 3/4 1/2 1/4
p2 5/4 1/2 1/4 5/4 1/2 1/4
q2 3/4 1/2 1/2 3/4 1/2 1/4
H 3/2 1 1/2 2 2 2

Hweak 3/2 1 1/2 3/2 1 1/2
Hstrong 2 1 1/2 3/2 1 1/2

η (including η = π and η = 2π), and have measured the rate of convergence, in the
limit (28), for each of the variables pi, qi, the total energy H in (13), and the ener-
gies Hweak and Hstrong defined in (20) and (21). For given values of α, and η, the
rates of convergence depend on the particular normal mode being integrated, and,
for each variable, we have listed in Table 2 the minimum rate over all four modes.
The rates of convergence found in this way turn out not to depend on η as long as
η 	= 2kπ, k = 1, 2, . . . (nonresonance). From the table, it is clear that the second order
of convergence one would naively expect from the reversibility of the method is far
from manifesting itself and that an order reduction is present in the limit (28). For
α = 3/2 (very strong spring and not very light second mass) the order reduction is
very marked; the situation improves when α is smaller. Note that a fortiori, for the
various variables, the orders of convergence of the RAI uniformly in ω cannot exceed
the values in Table 2.

An illustration of the performance of the integrator is given in Figure 2, which
corresponds to the intermediate case α = 1 used in [10], [11]. The initial condition
is the second fast mode in (15) and h = 0.125, ω = 400 (a nonresonant combination
with η = 50). Note that, even though the numerical method behaves in a stable way,
it produces a misleading solution. In the plots, the components of the theoretical so-
lution, whose period is ≈ 0.01, have been represented only at grid points in order to
allow a better comparison with their numerical counterparts. For the variable q1 and
in agreement with our earlier discussion of the behavior of the normal modes, the am-
plitude of the true solution q1(t) is negligible. For p1(t), p2(t), q2(t), the representation
in Figure 2 introduces a stroboscopic effect because the fast zigzags of these functions
in the intervals between grid points cannot be “seen.” In an alternative representation
using a fine time grid, the graphs of these functions appear as almost solid horizontal
bands whose vertical amplitudes coincide with those shown in the current figure.

The remainder of this section is devoted to an analysis of the mechanisms that
give rise to the complicated pattern of orders of convergence shown in Table 2. Sub-
sections 4.3 and 4.4 deal with errors in pi, qi and subsection 4.5 with errors in energy.

4.3. Errors in the numerical frequencies. According to (23), from time t0 =
0 to time tn = nh, the slow and fast phases of the true solution increase by amounts
Ω−tn and Ω+t

n. For the numerical solution in (25), the increases in phase of the
numerical solution are of the form Ω̃−tn and Ω̃+t

n, where Ω̃−h and Ω̃+h denote the
rotation angles of the numerical scheme in a single step, i.e., the arguments of the
eigenvalues of the propagator Φ̃(h, ω). Therefore the success of any numerical method
very much hinges on the approximations that the frequencies Ω̃± of the propagator
provide to the true frequencies Ω±.
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Fig. 2. True (dots) and RAI (diamonds) solutions.

Our next result, proved in Appendix A, shows the behavior of the numerical slow
frequency.

Proposition 2. For the RAI, in the limit (28) with η 	= 2kπ, k = 1, 2, . . .,

Ω̃− = 1 − 1 + cos(η)
4η2−a

h2−α + o(h2−α), h→ 0,(29)

and therefore, in view of (16),

Ω̃− − Ω− =
1 − cos(η)

4η2−a
h2−α + o(h2−α), h→ 0.

Since, under the hypothesis of this proposition, 1 − cos(η) 	= 0, we see that the
numerical slow frequency is O(h2−α) away from its true counterpart and this intro-
duces an upper limit of 2−α for the rates of convergence in the dynamic variables p1,
q1, q2. The effect on p2 is somewhat more subtle. In view of Table 1, the amplitude
of the slow oscillations of p2 in solutions of bounded energy is only O(ω−2+α), i.e.,
O(h2−α). Hence, for 1 < α < 2, there is an order reduction in p2 from the expected
2 to 2(2 − α) (here 2 − α units come from approximating the true frequency and
another 2−α units from the small amplitude). For α ≤ 1, the quantity 2(2−α) is not
smaller than the nominal rate of convergence, and therefore the inaccuracy of the slow
frequency does not entail an order reduction in this variable (see the second column
of Table 3 below).

Figure 3, where again α = 1, illustrates the behavior of Ω̃− as a function of η = ωh
for h = 1, 1/2, 1/4, 1/8. For fixed nonresonant η, i.e., for η 	= 2kπ, k = 1, 2, . . ., the
numerical slow frequency approaches 1 as h ↓ 0, in agreement with (29). However, for
fixed h and η → 2kπ, we have Ω̃− → 0. This could have been foreseen from Figure 1:
the eigenvalue branches that for η away from a resonance ωh = 2kπ approximate the
slow true eigenvalues come together at a resonance where they give rise to the double
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Fig. 3. Slow numerical frequency of the RAI as a function of η = ωh for h = 1, 1/2, 1/4, 1/8.

eigenvalue λ = 1, whose argument equals 0 (see the next subsection). Figure 3 clearly
bears out that the estimate (29) cannot be uniform in η.

We now turn to the analysis of the fast frequency Ω̃+ where, for reasons that
will become clear presently, it is simpler to word the result in terms of the eigenvalue
argument Ω̃+h rather than in terms of the frequency itself.

Proposition 3. In the limit (28),

Ω̃+h = η +
sin(η)
2η2−a

h2−α + o(h2−α), h→ 0,(30)

and therefore, in view of (17),

Ω̃+h− Ω+h =
sin(η) − η

2η2−a
h2−α + o(h2−α), h→ 0.

From this result, for α < 1 the fast frequency is approximated by the RAI only to
order 1−α, while for α ≥ 1 the numerical frequency does not even converge to the true
value Ω̃+. As was the case for the variable p2 in the slow modes, this order reduction
in the frequency is not automatically transferred to the variables pi, qi, all of which
possess small amplitudes in a fast mode. Listed in the third column of Table 3 are
the order reductions in the dynamic variables resulting from the inaccuracy of Ω̃+; as
before, the values displayed are found by combining the estimates of the error in the
frequency with those of the sizes of the variables.

The table also contains the (rather complicated) combined effect of the inaccura-
cies of the slow and fast numerical frequencies. For α = 1/2, 1, 3/2 the formulae in the
fourth column exactly reproduce the numbers in the left half (η 	= 2kπ) of Table 2;
we conclude that, for nonresonant η, the orders of convergence in pi, qi found in the
numerical experiments are totally explained by the lack of accuracy in the frequencies
described in Propositions 2 and 3. In other words, for nonresonant η, the errors that
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Table 3

Reduced orders of convergence for the RAI arising from the inaccuracy of the numerical fre-
quencies. Stars indicate no order reduction. For ωh = 2kπ, k = 1, 2, . . ., and due to eigenvector
inaccuracies, there is a further reduction to 1 − α/2 in the variables p1, q1, q2.

Slow frequency Fast frequency Combined effect

p1 2 − α
2 − 3α

2
, α ≤ 1

1 − α
2

, 1 ≤ α

2 − 3α
2

, α ≤ 1

1 − α
2

, 1 ≤ α

q1 2 − α

∗ ∗ ∗ α ≤ 2/3

3 − 3α
2

, 2/3 ≤ α ≤ 1

2 − α
2

, 1 ≤ α

2 − α

p2
∗ ∗ ∗ α ≤ 1

4 − 2α, 1 ≤ α

2 − 3α
2

, α ≤ 1

1 − α
2

, 1 ≤ α

2 − 3α
2

, α ≤ 1

1 − α
2

, 1 ≤ α

q2 2 − α
1 − α

2
, α ≤ 1

α
2

, 1 ≤ α

1 − α
2

, α ≤ 1

α
2

, 1 ≤ α ≤ 4
3

2 − α, 4
3
≤ α

arise from the implied approximation P̃ to the exact matrix P in (23) do not provide
additional bottlenecks for the orders of convergence of the variables pi, qi.

4.4. Errors in the propagator eigenvectors. For resonant η Proposition 2
does not apply. The propagator at such values of η is given by

Φ̃ =

⎡⎢⎢⎢⎣
1 − 1

2h
2 −h+ 1

4h
3 0 0

h 1 − 1
2h

2 0 0
0 0 1 0
h − 1

2h
2 0 1

⎤⎥⎥⎥⎦ ,(31)

a matrix whose eigenvalues are those of the upper left 2 × 2 block (i.e., those of the
propagator of the Verlet method as applied to the slow Hamiltonian (20)) and the
double eigenvalue 1. According to (16) and (17), these eigenvalues are, respectively,
O(h3−α) and O(h2−α) away from the true exp(±iΩ−h) ≈ 1 ± ih and exp(±iΩ+h) ≈
exp(±i2kπh) = 1, so that the order reduction due to inaccuracies in the frequencies
discussed above and shown in Table 3 also holds for resonant η.

Furthermore, for resonant η, there is an additional source of order reduction,
linked to the inability of the numerical propagator to approximate accurately the
eigenvectors of the true flow. From (31), it is clear that the left eigenspace of Φ̃ or Φ̃n

associated with the slow eigenvalues coincides with the 2-plane of the variables p1, q1
while the corresponding fast left eigenspace is the 2-plane of the variables p2, q2 − q1.
Thus the values of pn

1 , qn
1 evolve slowly and are not influenced by the initial conditions

p0
2, q

0
2 and the values of pn

2 and qn
2 − qn

1 do not vary at all along the integration, as
associated with the eigenvalue λ = 1. There is a stroboscopic effect at work: since the
rate at which the solution is sampled coincides with the fast numerical frequency, fast
modes at grid points tn are seen as constant.
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For the true flow in (23), it is easily shown that the linear combinations of variables
that evolve slowly are of the form

(1 + . . .)p1 + (1 + . . .)p2, (1 + . . .)q1 + (ωα−2 + . . .)q2,(32)

while the fast combinations are given by

−(ωα−2 + . . .)p1 + (1 + . . .)p2, (1 + . . .)q2 − (1 + . . .)q1(33)

(for each coefficient only the leading term in the expansion in negative powers of ω
has been shown). We conclude that, at a resonance and in the limit (28), the structure
of the numerical left eigenspaces is not consistent with that of the true flow: p1 + p2

is a slow variable for the flow but not for the numerical method.
The preceding observation leads readily to the construction of an example that

bears out the extra order reduction in p1, q1, q2 that takes places for resonant η (see
Table 2, right). In fact, it is enough to choose the initial condition leading to the
first fast true mode in (15). In the numerical solution, the variables p1 and q1 evolve
as if the Verlet method were applied to the slow Hamiltonian (20); hence, for these
two variables, the numerical and true solution will be completely out of phase and
the errors will be of the same size as the solution itself, i.e., O(h1−α/2). In addition,
qn
2 = qn

1 , and this also implies an O(h1−α/2) error in q2.

4.5. Energy behavior. We end this section by looking at the errors in the
energy H = H(p1, p2, q1, q2). A naive analysis based on the errors in the variables pi

and qi would lead to pessimistic conclusions, because the Lipschitz constants of H
with respect to those variables grow with ω. However, all of the numerical methods
considered in this article make use of exact solutions of a rapidly oscillatory subsystem,
and this implies that those substeps do not change the energy of the subsystem. As a
consequence, the energy behavior is better than one may at first fear.

We consider first the resonant case. As discussed in the preceding subsection, in
the numerical solution, the variables p2 and q2 − q1 remain constant, and therefore
Hstrong in (21) will also stay at its initial value. The variables p1 and q1 evolve as
they would in the application of the Verlet method to the Hamiltonian problem with
energy (20), and this implies that Hweak varies along the integration by an amount
O(h2) (uniformly in ω). The conclusion is that H , which remains constant in the
true solution, changes by an O(h2) quantity in the numerical solution and no order
reduction is present, as found experimentally in Table 2. However, the RAI does not
mimic accurately the physics of the problem, because it achieves small errors in H
essentially through an artificial conservation of Hweak and Hstrong separately when
these quantities are not conserved along the true solution.

Before leaving the resonant case, we point out that the O(h2−α) experimental
errors in Hweak reported in Table 2 arise in the integration of the slow modes. For
these we have seen in Table 3 that p1 and q1 possess errors O(h2−α) and in this way
Hweak just inherits the order reduction from momentum and position. The errors in
Hstrong must necessarily be of size O(h2−α), since the total H = Hweak + Hstrong

possesses O(h2) errors.
In the nonresonant case, Hweak also inherits the O(h2−α) errors in p1 and q1, but

now there is no partial cancellation with the errors in Hstrong and H suffers from an
order reduction to 2 − α.

5. Analysis of the IM and MIM. The following treatment is patterned after
that of the preceding sections; many details will be skipped. The application of the
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Fig. 4. Behavior of the argument of the eigenvalues of the IM propagator as functions of the
step length h with ω fixed.

IM and MIM to the test problem is, of course, based on the splitting of forces where
the strong force fs and weak force fw, respectively, correspond to the strong and weak
springs.

5.1. Stability of the IM. For the IM, the characteristic polynomial is again of
the symmetric form (26), but now the coefficients are given by

a = 2 + 2c∗ − h2 +
ωα

Ω2
h2 − s∗

ωα

Ω3
h,(34)

b = 2 + 4c∗ − 2c∗h2 + 2c∗
ωα

Ω2
h2 − 2s∗

ωα

Ω3
h,(35)

where

Ω =
√
ω2 + ωα = ω +

1
2
ω−1+α +O(ω−3+2α)

is the frequency of the reduced system and

c∗ = cos(Ωh), s∗ = sin(Ωh).

Figure 4 should be compared to Figure 1 and shows the behavior of the arguments
of the four eigenvalues of the IM propagator as functions of h (once more, ω = 10
and α = 1). For k = 1, 2, . . ., as h ↑ 2kπ/ω with fixed ω, the fast eigenvalues meet the
slow eigenvalues at a point h = hk(ω). At this value of h, the numerical propagator
possesses a pair of nonreal double eigenvalues λ, λ−1, thus mimicking the behavior of
the eigenvalues of the flow. However, for h just above the critical hk(ω), k = 1, 2, . . .,
there is an instability interval hk(ω) < h < h∗k(ω) for which the numerical eigenvalues
do not have unit modulus but are of the form ρ exp(iγ), ρ exp(−iγ), ρ−1 exp(iγ),
ρ−1 exp(−iγ), ρ > 1; in these intervals Figure 4 displays only two values ±γ of the
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Fig. 5. Behavior of the argument of the eigenvalues of the MIM propagator (short filter) as
functions of the step length h with ω fixed.

argument rather than the four that exist for “most” values of h. On the other hand,
and just as was the case for the RAI, the IM has near crossings just above h = 2kπ,
k = 1, 2, . . . , instead of the crossings of the true flow.

Since the instability intervals hk(ω) < h < h∗k(ω) are present for arbitrarily large
ω, it follows that a stability condition similar to (27) does not exist for the IM. In
other words, in order to obtain stable runs with the IM, it is necessary either to use
small time steps h = O(ω−1) or to be careful with the choice of h so as to avoid the
(narrow) instability intervals.

5.2. Stability of the MIM. For the MIM, the characteristic equation is of the
symmetric form (26) and very similar to that of the IM. In lieu of (34) and (35), the
mollified version has

a = 2 + 2c∗ − h2 +
ωα

Ω2
h2 − ψ̂φ̂s∗

ωα

Ω3
h,(36)

b = 2 + 4c∗ − 2c∗h2 + 2c∗
ωα

Ω2
h2 − 2ψ̂φ̂s∗

ωα

Ω3
h,(37)

where ψ̂ and φ̂ denote the Fourier transforms in (9) and (10) evaluated at Ωh.
Figure 5 is similar to Figures 1 and 4 and uses the short weight function for ψ

and φ. At first sight it appears that the MIM is very successful in approximating
the behavior of the true flow in Figure 1. However, it should be pointed out that a
more careful analysis of the characteristic equation shows that the topology of the
MIM eigenvalue branches is exactly the same as that of the IM, with instability
intervals close to 2kπ/ω, k = 1, 2, . . .. The difference with the IM is that, for the MIM
propagator, the stability intervals are extremely narrow and the near crossings are
extremely tight. For the lowest (k = 1) crossing in Figure 4, the instability interval
of the IM is 0.54403 < h < 0.55284, while the corresponding interval in Figure 5 is
0.54821 < h < 0.54901 with a width < 0.001 (see Appendix B for further discussion).
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5.3. Order reduction. As was the case for the RAI, the order reductions in the
IM and MIM may be borne out by considering the limit (28). However, the details of
the analysis become somewhat simpler by using instead the limit

h→ 0, Ω → ∞, hΩ = η∗ > 0,(38)

with η∗ constant. It turns out (see Appendix B) that for the IM and MIM there is no
order reduction in the approximation of the slow frequency Ω− and an order reduction
to 3 − α (α > 1) in the approximation of the fast frequency Ω+. The latter does not
imply any order reduction in the positions q1 and q2 but, for α > 4/3, leads to an
order reduction to 4 − 3α/2 in the momenta p1 and p2. The remaining subsections
are devoted to exploring the order reductions that result from inaccuracies in the
eigenvectors.

5.4. Eigenvectors in the nonresonant case. For the IM, when η∗ 	= 2kπ,
k = 1, 2, . . ., the order reduction in the variables p1 and p2 is more severe than
that implied by the lack of accuracy in the fast frequency we have just described. In
fact, assume that the initial condition is taken from the second slow mode in (14)
and consider the first time step t0 → t1. For the variable p2 the true value is given
by p2(h) = −ξ− sin(Ω−h) and is therefore of size O(ω−2+αh) = O(h3−α). For the
numerical solution, the variable p2 does not change at kicks because the soft force
acts only on p1; this alters the physics of the problem, where the soft spring acts on
both p1 and p2 (note that d(p1 + p2)/dt = q1). The behavior of p1

2 in the numerical
solution is then determined by the oscillation substep, i.e., essentially by the fast
reduced system, and a simple computation, not reproduced here, reveals that, as a
consequence of this inconsistency, the error p1

2−p2(h) is of the same size as p2(h) itself
and p2 suffers from an order reduction to 3−α if α > 1. The variable p1 possesses the
same reduction; however, the error in total momentum p1 + p2 is still O(h2) because,
at leading order, the errors in p1 and p2 cancel each other (the numerical method
pumps in at kicks the “right” amount of additional momentum, but applies it entirely
to p1 instead of distributing between p1 and p2, as would have been correct).

Interestingly enough this degraded performance manifests itself at the very first
time step rather than being built up as the integration proceeds. However, this should
not come as a surprise: while inaccuracies in the frequencies lead to a growing error
phase as the number of steps increases, inaccuracies in the eigenvectors are indepen-
dent of the length of the integration interval (the matrices P , P̃ in (23), (25) are
independent of t). For this reason and as discussed in [13] the analysis of this kind
of algorithm cannot be performed in a step by step fashion: the errors after one step
may be of the same size as the global errors.

The MIM also suffers from the order reduction described in this subsection: the
requirements (9) and (10) operate only for Ωh = 2kπ and cannot be of help away
from resonances.

5.5. Eigenvectors at a resonance. At a resonance, with η∗ = 2kπ, k =
1, 2, . . ., the IM propagator is given by⎡⎢⎢⎢⎢⎣

1 − ω2

2Ω2 h
2 −h+ ω2

4Ω2 h
3 − ω2

2Ω2 h
2 0

ω2

Ω2 h 1 − ω2

2Ω2 h
2 ω2

Ω2 h 0
0 0 1 0

ω2

Ω2 h − ω2

2Ω2 h
2 ω2

Ω2 h 1

⎤⎥⎥⎥⎥⎦ ;
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Table 4

Reduced orders of convergence for the IM and MIM (stars denote no reduction).

Ωh �= 2kπ Ωh = 2kπ

IM & MIM IM MIM

p1, p2
∗ ∗ ∗ α ≤ 1

3 − α, α > 1
2 − α

∗ ∗ ∗ α ≤ 4/3

4 − 3α/2, α > 4/3

q1, q2 *** 2 − α/2 ***

the corresponding eigenvalues are then 1 (double) and those of the upper left 2 × 2
block, i.e., those of the Verlet scheme as applied to a harmonic oscillator with frequency
ω/Ω = Ω− + O(h4−α) (cf. Appendix B). For the double fast eigenvalue, the left
eigenspace is the 2-plane of the variables p2 and q2 − q1. This is consistent with the
situation for the true flow, where (33) shows that in the limit (38) the fast variables
are also p2 and q2 − q1. On the other hand, after adding the first and third rows of
the propagator, we see that[

p1 + p2

q1

]n+1

=

[
1 − ω2

2Ω2 h
2 −h+ ω2

4Ω2 h
3

ω2

Ω2 h 1 − ω2

2Ω2 h
2

][
p1 + p2

q1

]n

(39)

so that the numerical slow left eigenspace is the plane of the variables p1 + p2, q1.
Again this is consistent in the limit (38) with the situation of the true flow (see (32)).

However, (32) and (33) also show that the discrepancy between the numerical and
true combinations of slow and fast variables is O(ω−2+α) and this lack of accuracy
gives rise to an order reduction. In fact, when the initial condition is taken from a
slow mode, the values of pn

2 remain constant along the integration, while p2(tn) varies
slowly. Hence the error in p2 will be of the same size as the variable p2 itself, i.e.,
2 − α (see Table 1). Since the combination pn

1 + pn
2 evolves accurately, the errors in

p1 will also be of order 2−α. Furthermore, when the initial condition corresponds to
the second fast mode, qn

1 oscillates at the slow frequency, while the true q1(tn) does
so at the fast frequency. Thus the errors in q1 will be of order 2 − α/2 (Table 1).
Since qn

2 − qn
1 evolves accurately, the variable q2 also suffers from an order reduction

to 2 − α/2. A summary of these findings is given in the third column of Table 4.
Turning now to the MIM, under the assumptions (9) and (10) the propagator at

a resonance is⎡⎢⎢⎢⎢⎣
1 − ω4

2Ω4 h
2 −ω4

Ω4 h+ ω6

4Ω6 h
3 − ω4

2Ω4 h
2 −ω2+α

Ω4 h+ ω4+α

4Ω6 h
3

ω2

Ω2h 1 − ω4

2Ω4 h
2 ω2

Ω2 h −ω2+α

2Ω4 h
2

−ω2+α

2Ω4 h
2 −ω2+α

Ω4 h+ ω4+α

4Ω6 h
3 1 − ω2+α

2Ω4 h
2 −ω2α

Ω4 h+ ω2+2α

4Ω6 h3

ω2

Ω2h − ω4

2Ω4h
2 ω2

Ω2 h 1 − ω2+α

2Ω4 h
2

⎤⎥⎥⎥⎥⎦ .

By taking linear combinations of rows we find the two implied recursions for the
combinations of variables associated with the left eigenspaces:[

p2 − ω−2+αp1

q2 − q1

]n+1

=
[
p2 − ω−2+αp1

q2 − q1

]n

,
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Table 5

Experimental orders of convergence in energy for the IM (top) and MIM (bottom).

Ωh �= 2kπ Ωh = 2kπ
α = 1/2 α = 1 α = 3/2 α = 1/2 α = 1 α = 3/2

H 2 2 2 3/2 1 1/2
Hweak 2 2 3/2 3/2 1 1/2
Hstrong 5/2 2 3/2 3/2 1 1/2

Ωh �= 2kπ Ωh = 2kπ
α = 1/2 α = 1 α = 3/2 α = 1/2 α = 1 α = 3/2

H 2 2 2 2 2 2
Hweak 2 2 3/2 2 2 2
Hstrong 5/2 2 3/2 7/2 3 5/2

[
p1 + p2

ω2

Ω2 (q1 + ω−2+αq2)

]n+1

=

[
1 − ω2

2Ω2h
2 −h+ ω2

4Ω2 h
3

ω2

Ω2 h 1 − ω2

2Ω2 h
2

][
p1 + p2

ω2

Ω2 (q1 + ω−2+αq2)

]n

.

In the second recursion note that ω2/Ω2 = (1+ω−2+α)−1 ≈ 1 and that the 2× 2 ma-
trix is the same one we encountered in (39). Therefore (and as proved in Appendix B
in a different way), at a resonance, the IM and MIM share the same frequencies, but
differ in the fast and slow combinations of dynamic variables; the MIM does a better
job in that they are able to identify the leading term of each coefficient in the linear
combinations in (32) and (33). The difference between the behavior of the methods is
perhaps best seen in physical terms. For instance, the coordinate that evolves slowly
is taken by the IM to be the position q1 of the first mass and by the MIM to be
(1 + ω−2+α)−1(q1 + ω−2+αq2), i.e., the abscissa of the center of mass of the whole
system, which makes more physical sense. Since α < 2, the abscissa of the center of
mass approaches q1 as ω increases; but, for α close to 2 the term ω−2+αq2 may be
substantial and the performance of the IM is impaired by not taking it into account.

A more detailed analysis leads to the results displayed in the last column of
Table 4.

5.6. Energy behavior. Table 5, which is similar to the lower part of Table 2,
contains the experimental order of convergence of the energy errors for the IM and
MIM. At a resonance, the IM exactly conserves p2 and q2 − q1 and evolves the pair
(p1 + p2, q1) as if driven by the Verlet integration (39). By using the same argument
we employed for the RAI integrator, we conclude that the errors in H , Hweak , Hstrong

are then O(h2−α). The MIM has no order reduction in H and Hweak and possesses
extra accuracy in Hstrong , facts that can be rigorously proved through an analysis of
the fast and slow combinations of variables discussed in the preceding subsection.

In the nonresonant case, the IM and MIM share once more the same behavior.
From Table 4, we know that, for α > 1, p1 suffers an order reduction to 3 − α
and, of course, Hweak inherits the same reduction. Nevertheless the reduction is not
transferred to the total energy H : a simple analysis, not reproduced here, reveals that
the leading terms O(h3−α) of the errors in the kinetic energies of the first and second
mass cancel each other, as a consequence of the corresponding cancellation of the
errors in the momenta p1 and p2 discussed in subsection 5.4.

6. The case of a nonlight second mass. So far, the constant α in the test
problem has been taken in the range 0 < α < 2. When α = 2, we encounter a
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physically different situation in that the second mass does not vanish in the limit
ω → 0. However, all of the preceding analysis carries through with a number of
minor adjustments (for instance, (16) has to be replaced by Ω− = 1/2 + O(ω−2),
the variables p1 and p2 are no longer small in a fast mode, the IM does not provide
a consistent approximation to the eigenvectors at a resonance, etc.), and the order
reductions listed in Tables 3 and 4 also apply. For the IM, this means convergence
uniform in ω is restricted to first order in positions and zero order in momenta. For
the MIM satisfying (9), (10) there is no order reduction in positions, but the momenta
are approximated only to first order. In this way we recover the results in [5], [13].

7. Conclusions. We have considered a linear test problem for the analysis of
numerical methods for highly oscillatory differential equations. While the success of
a given method on the test problem does not necessarily imply similar successes in
more general situations, it is clear that methods that have difficulties in integrating
this simple model cannot be recommended for realistic applications.

Three integrators have been applied to the test problem and the following con-
clusions have emerged:

• The IM and MIM are not necessarily stable for h moderate and ω large. The
h-intervals of instability of the MIM have been found to be very small and, in
any case, much smaller than those of the IM. The RAI does not suffer from
any instabilities; its stability limit is dictated only by the period of the slow
oscillations.

• We have shown that it is possible for an algorithm to suffer from severe order
reductions when applied to the test problem. Numerical integrations in the
presence of order reduction may be misleading: the output of the algorithm
may show the variables evolving with a “reasonable” superposition of fast
and slow oscillations, but it is well possible that the simulation has no resem-
blance to the true dynamics. In practice it is usually trivial to detect when
a numerical integration of an oscillatory problem is unstable; it is enough to
monitor the growth in the energy or in the dependent variables themselves.
For this reason, we believe that the possibility of order reduction is more
dangerous than the threat posed by instabilities. On the other hand, some
authors point out that stable, inaccurate integrations may still be usable in
some applications (for instance in sampling molecular conformations) while
an unstable run is certainly of no value in any circumstances.

• For the model problem, errors are of two kinds. The algorithms may, of course,
misrepresent the values of the various frequencies, but it is also possible for a
numerical method to identify incorrectly the structure of the normal modes
or, equivalently, the combinations of variables that evolve at the different
frequencies present in the problem.

• All methods cope better with cases where high frequencies originate from
small masses than with cases of stiff forces.

• The pattern of order reductions for the RAI has been shown to be ex-
tremely complicated; furthermore, the order reductions for this method are
very marked. For the case α = 1 considered in [10] and [11] the errors in pi,
qi cannot be better than O(h1/2), while the error in H cannot be better than
O(h).

• The IM suffers from an order reduction in the coordinates q; nevertheless, for
each value of α, the errors in q are O(h) or better. The order reduction in
the momenta p and in the energy H is more severe, and for α ≈ 2 there is no
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accuracy left in these variables.
• The MIM does not have any order reduction in q or H , and the reduction in p

is, at worst, to O(h), regardless of the value of α. This difference in behavior
between the IM and MIM is not due to a more accurate representation in the
frequencies (indeed the IM and all members of the MIM class share the same
frequencies at a resonance), but to a better identification of the normal mode
structure.

Finally we point out that it is always possible to enhance the performance of the
methods by incorporating into them analytic knowledge of the solution. For instance,
the test problem is more easily integrated if p1 is replaced by p1 + p2 as a dependent
variable (cf. (32)), something that may or may not be obvious at first sight, and/or if
q2 is replaced by the elongation q2 − q1. However, it is not clear to us to what extent
such an analytic knowledge may be available before numerically integrating a given
realistic problem.

Appendix A: Proofs. This appendix contains the proofs of the propositions.
Proof of Proposition 1. By introducing the auxiliary unknown

z = λ+ λ−1,(40)

the 4th degree equation (26) reduces to

z2 − az + b− 2 = 0,

an equation whose discriminant Δ = a2 − 4(b− 2) can be rewritten in the form

Δ = (−2(1 − c) + h2)2 + 2s2ωα−2h2 + s4ω2α−4 + 4s2(1 − c)ωα−2.

For c 	= 1 the last three terms are > 0, and for c = 1 and h > 0 the first term is > 0.
Hence, for h > 0, the equation for z has two real roots z1 	= z2.

Each value of z gives rise, via (40), to two (mutually inverse) values of λ, and,
with z real, these will have modulus 1 if and only if −2 ≤ z ≤ 2, a requirement on z
that, in terms of the coefficients a, b, becomes

b+ 2a+ 2 ≥ 0, b− 2a+ 2 ≥ 0.

(Note that b± 2a+ 2 = 0 is equivalent to z = ∓2 or to a double root λ = ∓1.)
Now b− 2a+2 = 2h2(1− c), and therefore a double root λ = 1 occurs if and only

if c = 1, i.e., ωh = 2kπ, k = 1, 2, . . . . On the other hand,

b− 2a+ 2 = 2(1 + c)[4 − h2 − 2(1 − c)ωα−2];

the stability condition (27) ensures that the last factor is > 0. Then, a double root
λ = −1 may occur only for c = −1, i.e., ωh = (2k − 1)π, k = 1, 2, . . .. When λ = 1 or
λ = −1 are double eigenvalues, an inspection of the corresponding propagator matrix
shows that they are not defective. (In fact, for λ = 1, this was pointed out in the
discussion of (31).) This concludes the proof.

Proof of Propositions 2 and 3. The characteristic equation (26) may be rewritten
as

P0(λ) +Q(λ) = 0,(41)

where

P0(λ) = (λ2 − 2cλ+ 1)(λ2 − (2 − h2)λ+ 1)
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and Q denotes the perturbation

Q(λ) = λ2(λ− 2 + λ−1)s2ηα−2h2−α.

For the unperturbed equation, P0(λ) = 0, the roots are c± is and the solutions of

λ2 − (2 − h2)λ+ 1 = 0,

i.e., the eigenvalues λ ≈ 1 ± ih − (1/2)h2 of the Verlet propagator when applied to
the slow Hamiltonian (20).

We fix η, see h as a variable that approaches 0, and look for solutions λ = λ(h)
of (26) that are perturbations of those of P0 = 0. For the fast motions, a perturbed
eigenvalue will be of the form

λ ≈ (c+ is)(1 + iβh2−α),

with β = β(λ) to be determined, and will lead to an angle of rotation

Ω̃+h = η + βh2−α + o(h2−α).

By taking the ansatz for λ to the characteristic equation, we find the following equation
for β:

−4(c− 1)(−2ic3 + 2c2s+ 2ic− s)β

− 2ηα−2(c+ 1)(c− 1)2(2c2 + 2ics− 1) = 0;

for c 	= ±1 the coefficient of β does not vanish and (30) follows after simplification of
the trigonometric functions.

When c = 1 or c = −1, the preceding perturbation fails and this does not come
as a surprise: the presence of double roots implies the inapplicability of the implicit
function theorem. However, for these exceptional values of η, the perturbation Q
vanishes due to the presence of the factor s, so that c + is is an exact eigenvalue of
(26) and therefore (30) also holds. This completes the proof of Proposition 3.

For Proposition 2, we note that, for the unperturbed eigenvalue λ = 1+ih+O(h2),
the factor λ−2+λ−1 that features in the definition of Q is of size O(h2) and therefore
the perturbation Q(1 + ih+O(h2)) is O(h4−α). The ansatz to be used is then

λ ≈ 1 + ih− 1
2
h2 + iβh3−α;

the exponent of h in the eigenvalue is one unit smaller than that in the perturbation
because λ = 1 is a double eigenvalue for h = 0.

The rest of the proof is similar to that of Proposition 3.

Appendix B: The IM and MIM characteristic equation. This appendix
provides additional insights into the characteristic equation for the IM and MIM
propagators and the corresponding eigenvalues.

We begin by noting that the IM coefficients (34) and (35) may be accommodated
into the MIM format (36) and (37) by setting ψ̂ = φ̂ = 1. This corresponds to the
fact that the IM can be seen as the result of choosing, in the formulation of the family
of mollified methods, the mollifier and averaging weight functions to be the Dirac
delta function whose Fourier transform is ≡ 1; see [13]. (Similarly a method with
mollification but without averaging would have φ̂ ≡ 1.)
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As in the preceding appendix, the characteristic equation may be written in the
form (41), where now

P0(λ) = (λ2 − 2c∗λ+ 1)
(
λ2 −

(
2 − h2 +

ωα

Ω2
h2

)
λ+ 1

)
and the perturbation is given by

Q(λ) = λ2(λ− 2 + λ−1)ψ̂φ̂s∗
ωα

Ω3
h.

For the unperturbed equation P0 = 0 (an equation that is independent of the
values of ψ̂ and φ̂ and therefore is shared by all of the methods of the family including
the IM), the roots are c∗ ± is∗ and the zeros of

λ2 −
(

2 − h2 +
ωα

Ω2
h2

)
λ+ 1,(42)

i.e., the eigenvalues of the Verlet propagator as applied to a harmonic oscillator with a
frequency (1−ωα/Ω2)1/2 that, as ω → ∞, differs from the true Ω− in terms O(ω4−α).
It is perhaps of some interest to note that here the effect of the strong spring on the
slow frequency Ω− is taken care of in the unperturbed P0 = 0, while for the RAI the
unperturbed equation just reflects the slow Hamiltonian (20).

Since, for small h (uniformly in ω), the unperturbed equation P0 = 0 has roots
of unit modulus, the instabilities of the IM and MIM are introduced only by the
perturbation Q. For a MIM that satisfies the requirements (9) and (10), Q, as a
function of h with fixed ω, possesses at h = 2kπ/Ω, k = 1, 2, . . ., a zero of multiplicity
≥ 3 (s∗ and both Fourier transforms vanish). Therefore such a MIM may be expected
to possess better stability properties than the plain IM, in agreement with the behavior
in Figures 4 and 5. Furthermore, experiments not reported here show that weight
functions whose Fourier transforms have multiple zeros at 2kπ, k = 1, 2 . . ., yield a
MIM whose instability intervals are extremely narrow.

We now turn to an investigation of the numerical slow and fast frequencies in the
limit (38). We first consider the cases where s∗ = 0. Then, Q = 0 and, according to
the discussion above, the propagator eigenvalues, regardless of the weight functions
chosen, are c∗ ± is∗ (which are O(h4−α) away from the true exp(±iΩ+h)) and the
zeros of (42) (which are o(h3) away from the true exp(±iΩ−h)). Hence, for s∗ = 0
or η∗ = kπ, k = 1, 2 . . ., there is no order reduction in the slow frequency and an
order reduction to 3 − α in the fast frequency, provided that α > 1. When the latter
estimate is combined with the solution sizes in Table 1, it turns out that there is no
implied order reduction in q1, q2 and, for α > 4/3, a reduction to 4− 3α/2 in p1 and
p2.

When η∗ 	= kπ, k = 1, 2 . . ., a perturbation/implicit function analysis, similar to
that in Appendix A, reveals that the order reduction is not worse than the one we
have just described.
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