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The Metropolis Adjusted Langevin Algorithm (MALA) and the Hybrid (or Hamil-
tonian) Monte Carlo Method (HMC) are successful Markov Chain Monte Carlo meth-
ods that use proposals based on knowledge of the target probability distribution and
consequently outperform algorithms with random walk proposals. That improvement
does not come without a price tag. Both methods include a user-determined matrix (the
mass-matrix in HMC, the preconditioner in MALA) as a ‘free parameter’ whose tuning
is a difficult art which in practice requires expensive trial runs. The stimulating paper
by Girolami and Calderhead provides theoretical guidance into the choice of matrices
and does so by exploiting two main ideas:

(1) The algorithms are generalized to incorporate a mass-matrix/preconditioner that
is a function of the state of the Markov chain. At first sight this would seem to
make matters worse vis-a-vis the freedom in the choice of matrix.

(2) In the case of interest in Bayesian inference, where the target is a likelihood,
the authors note that, once the matrix is allowed to be state-dependent, it may
be chosen to coincide with the Fisher information matrix which defines a ‘nat-
ural’ metric to compute distances between parameterized probability measures.
Endowed with such a metric, the space of parameterized distributions is a Rie-
mannian manifold. In the case of MALA, the resulting algorithm (MMALA)
has a beautiful structure. The increment from the current state to the proposal
includes a random component given by a Brownian motion on the Riemannian
manifold and a deterministic component in the direction of steepest ascent in
likelihood, where now ‘steepest’ is understood as measured by the natural met-
ric for distributions rather than by the Euclidean distance between distribution
parameter values.

The article clearly bears out the advantages of the new algorithms, MMALA and
RMHMC, based on such an automatic, natural, geometric choice of the matrices and
I have little doubt that it will lead to much future work. In connection with item (1)
above there are obvious lines open to research. May the rather involved MMALA pro-
posal be simplified (in ways different from that already considered in the paper)? For
RMHMC, what is the most efficient way to integrate numerically the relevant canonical
equations subject to preservation of geometric properties like reversibility and conser-
vation of volume? Here the Hamiltonian function, while being separated in potential
and kinetic components, possesses a variable mass-matrix, a case that has not been
addressed in the, by now large, body of work on geometric numerical integration as
defined by Sanz-Serna (1997). The simple leapfrog/Verlet algorithm is the integrator of
choice in conjunction with standard HMC; higher-order integrators, while potentially
advantageous (see the bounds in Beskos et al. (2010)), suffer from its more demanding
computational cost per time step. For RMHMC, where the simplest integrator is im-
plicit, would it pay to move to higher order? In more general terms, the final success of



MMALA ad RMHMC will depend on addressing a number of implementation issues,
particularly so when the state space possesses large dimensionality.

Item (2) will also attract much attention, if I am not mistaken. Are there alternative
useful metrics beyond that defined by the Fisher information? The authors mention
in this connection the observed Fisher information matrix or the empirical informa-
tion matrix. The former, the negative Hessian of the log-probability, has the appeal of
making sense not only in the context of Bayesian statistics but for any target distribu-
tion and in fact may turn out to be useful in, say, sampling the canonical distribution
in molecular simulations (I am currently experimenting with that possibility). Unfor-
tunately the Hessian typically is not positive definite throughout the state space (for
instance it is not in the illustrative example in Section 5.1), a difficulty that has to be
addressed. By the way, in the Bayesian context of the paper, the metric tensor equals
the expected information matrix plus the negative Hessian of the log-prior: the first is
necessarily positive definite, the second is not in general.

The last comments lead us to explore connections with well-known ideas from the
field of optimization. There is of course a clear relation between exploring a probability
distribution and locating the maxima of the log-probability. The message of the paper
is then akin to something that has been known for long in optimization: taking local
steps in the direction of the current (standard) gradient is not the best way to reach the
maximum of the objective function. The product of the inverse negative Hessian and
the gradient provides a much better alternative as shown in the figure.

Something I have enjoyed when reading the article by Girolami and Calderhead is
the wide variety of ideas that contribute to shape the final algorithms, from Riemannian
geometry to Bayesian statistics, from Hamiltonian dynamics to numerical geometric
integration. For a non-statistician like me, it has been a privilege to study a piece of
work that clearly demonstrates the inherent unity of all mathematical sciences. It gives
me great pleasure to propose the vote of thanks.
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Figure 1: The ellipses represent level sets of a real quadratic function L with a maxi-
mum at the point O. The direction of the standard Euclidean gradient g of L at P is not
optimal when trying to reach O from P. The best possible direction PO is given by
the product of the negative inverse Hessian and g; this is the gradient of L with respect
to the metric defined by the negative Hessian. In probability, L corresponds to the
log-probability density. In mechanics L is the negative potential and g provides the di-
rection of the force at P; after choosing the mass matrix appropriately the acceleration
will be aligned with PO. In optics the ellipses depict wave-fronts in a non-isotropic
medium, OP a ray emanating from O; the ray and the wave-front are not orthogonal
in the standard sense. Hamilton found the canonical equations guided by this analogy
between optics and mechanics.



