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A MULTISCALE TECHNIQUE FOR FINDING SLOW MANIFOLDS
OF STIFF MECHANICAL SYSTEMS*
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Abstract. In the limit of infinite stiffness, the differential equations of motion of stiff mechanical
systems become differential algebraic equations whose solutions stay in a constraint submanifold P of
the phase space. Even though solutions of the stiff differential equations are typically oscillatory with
large frequency, there exists a slow manifold P consisting of nonoscillatory solutions; P has the same

dimension as P and converges to it as the stiffness approaches infinity. We introduce an iterative
projection algorithm, IPA, that projects points in the phase space of a stiff mechanical system onto
the associated slow manifold P. The algorithm is based on ideas such as micro-integration and
filtering coming from the field of multiscale simulation and is applicable to initializing integration
algorithms for both stiff ODEs and DAEs, including the initialization of Lagrange multipliers. We
also illustrate in a model situation how the algorithm may be combined with numerical integrators
for both the stiff system and the limit constrained system. These combinations may speed up the
solution of stiff problems and also be used to integrate DAEs with explicit algorithms.
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1. Introduction. In this paper we propose an iterative projection algorithm,
IPA, for computing slow points of stiff mechanical systems, i.e., points that, when
taken as initial data, do not give rise to rapidly oscillatory solutions. We provide ex-
amples of several possible uses of that algorithm to initialize simulations of both stiff
ordinary differential equations (ODEs) and differential algebraic equations (DAEs)
(including the initialization of Lagrange multipliers). We illustrate in a model situa-
tion how the algorithm may be combined with numerical integrators for both the stiff
system and the limit constrained system. These combinations may speed up the solu-
tion of stiff problems and also be applied to integrate DAEs without solving algebraic
equations.

We are concerned with the stiff ODEs

(1) G=F(gt)—*d (@) g(gt), w>1, geR? geR' k<d,
and with the associated (index 3) DAEs [6], [15]
(2) i=F(gt)—g'(@t)" A, glgt)=0.

A simple model example is given by the DAEs that govern the motion of a planar
pendulum and the ODEs that describe the mechanical system obtained by replacing

*Received by the editors January 5, 2012; accepted for publication (in revised form) July 6, 2012;

published electronically October 11, 2012.
http://www.siam.org/journals/mms/10-4/86146.html

fDepartment of Mathematics, Bar-Tlan University, Ramat Gan, 52900, Israel (arielg@math.biu.ac.
il).

fDepartamento de Matematica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Val-
ladolid, Spain (sanzsern@mac.uva.es). The work of this author was supported by grant MTM2010-
18246-C03-01 (Ministerio de Ciencia e Innovacién).

§Department of Mathematics and Institute for Computational Engineering and Sciences, The
University of Texas at Austin, Austin, TX 78712 (ytsai@math.utexas.edu). The work of this author
was partially supported by NSF grants DMS-0714612 and DMS-0914465.

1180



SLOW MANIFOLDS OF STIFF MECHANICAL SYSTEMS 1181

the pendulum rod by a stiff spring (see section 2.3). Molecular dynamics simulations
may be performed including very stiff forces associated with chemical bonds between
atoms or alternatively with constrained models where interatomic distances are as-
sumed to remain constant [22; section 13.5]. Similar considerations apply to other
cases, including circuit and multibody simulations, where small, fast oscillations may
be removed from the model by the introduction of constraints.

In (1) and (2), F and g are smooth functions and, furthermore, it is assumed that
for each g and ¢ the kx d Jacobian matrix ¢'(g; t) of g with respect to g has independent
rows. In this way g(¢;t) = 0 defines a d — k time-dependent submanifold C = CA(L‘)
of R% and (2) describes a mechanical system with forces F' whose configuration is
constrained to be in 5(t) at each time ¢. The equations in (2) include redundant,
nonindependent configuration coordinates ¢ and are sometimes called the Lagrangian
equations of motion of the first kind of the mechanical system. The term —g’(q; )T\
represents the forces exerted by the constraints, and A € RF is the time-dependent
vector of Lagrange multipliers. Throughout this paper, we denote the velocities by
p=q. If (q(t),p(t)) is a solution of (2), from g(q(t);t) = 0, we may write

oy L. A 1 99
9(@(®), p(t);t) = ¢'(@(t); 1) p(t) + . (a(t);t) =0,
so that, at each time ¢, the point (¢(¢),p(t)) is on the time-dependent 2(d — k)-dimen-
sional submanifold P = P(t) of R? x R? defined by the equations

g(g;t) =0, 9(g,p;t) = 0.

We shall say that P is the constraint submanifold of the DAEs (2).! In the important
case where g does not depend on ¢, the equations of P become 9(¢) =0, ¢ (q)p=0
and P is the tangent bundle of the (time-independent) submanifold C of R, Of course
the initial value given by (2) in tandem with ¢(to) = qo, p(to) = po only has a solution
if the given initial point (go,po) is on ”ﬁ(to).

The motions of (1) are not constrained; the corresponding initial value problem
is solvable for arbitrary (go,po) in the phase space R% x R%. In (1), —w?¢'(¢;t)T g(q; 1)
represents large O(w?) forces that are derived from the potential

2

(3) Vig:t) = 5g(at) g(:t).

Those forces lie in the column space of ¢’(¢;t)T; i.e., they are orthogonal, in the
configuration space R, to C. Their presence implies that, typically, solutions ¢(¢) of (1)
oscillate with large O(w) frequencies in directions orthogonal to C. However, if g(g; t)
is small, i.e., if ¢ is not far away from C, the force —w?g'(q;t)" g(g; t) is of moderate size.
In fact it turns out (see section 2) that there is a time-dependent 2(d — k)-dimensional
submanifold P = P(w;t) of R? x RY, O(w=2) close to the constraint manifold P such
that for (qo,po) in P(w;t) the solution of the initial value problem given by (1) and
q(to) = qo, p(to) = po has a slow solution, i.e., a solution that does not include rapidly
oscillatory components. We say that P is the slow manifold of (1).2 This manifold is
left invariant by (1): for solutions of (1), (q(to), p(to)) € P(w,to) at a given to implies
(q(t), p(t)) € P(w,t) for each t.

I Throughout this paper the notation ~ will refer to entities related to the constraint manifold.
2Entities associated with the slow manifold will be identified by the notation ~
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It is well known [19], [14] that as w increases, the slow solutions of the stiff system
(1) converge to solutions of the DAEs (2). Moreover if, as w — oo, we consider fixed
initial data (go,po) bounded away from the slow manifold, then the corresponding
solutions (g(t),p(t)) exhibit oscillations of increasing energy and therefore become
unphysical. These are the arguments that allow the introduction of the constrained
Lagrangian model (2) as the limit of unconstrained systems (2) of very large stiffness;
see, e.g., [4, section 17]. Slow manifolds are important in the analysis and numerical
treatment of dynamical systems; a list of nearly one hundred references is given in
the survey [20].

The present article is devoted to introducing and analyzing an algorithm that, for
any given time t and point (gg,po) in the phase space R? x RY, finds the projection
(o, Do) of (go,po) onto the slow manifold ﬁ(w;to). The algorithm is based on the
fact that the solution of (1) with initial condition (go,po) oscillates around the slow
manifold. We integrate with an O(w™1!) step size h the corresponding stiff initial value
problem in a small time window of O(w™!) length to obtain a so-called microsolution;
the oscillations in the microsolution are then filtered away by convolution with an
averaging kernel, and this results in a point (g1, p1) closer to the slow manifold than
the initial (qo,po). The procedure is then iterated a few times to obtain a point
sufficiently close to the slow manifold. An important feature of the algorithm is
that, since the step size and and the length of the micro-integration window are both
O(w™1), the required work does not grow with the stiffness parameter w.

The ideas of micro-integration and filtering used here are borrowed from the field
of multiscale methods for the integration of differential equations; see [12] and also [9],
[10], [11], [13], [21], 1], [2], [3], [24], [7], [8]. In fact the iterative projection algorithm
may be used to build ezplicit integrators to compute both slow solutions of (1) and
solutions of (2). This is discussed in section 6.

The paper is divided into seven sections. Section 2 presents background material
on slow solutions and slow manifolds, together with some examples that illustrate
the relevant theory. The iterative algorithm IPA is introduced in section 3. That
section also reviews the process of filtering, with particular attention to the role of
two parameters of the kernel that are crucial in the analysis: the number of vanishing
moments and the number of continuous derivatives. The algorithm is analyzed in
section 4. Sections 5 and 6 are devoted to numerical experiments, and section 7
contains our conclusions.

All of our results are trivially extended to cases where the left-hand sides of (1)
(2) are changed into M, where M is a symmetric, positive definite mass matrix.
The format —w?¢’(g;t)T g(q;t) may be replaced, as in [19] or [14], by a more general
—VV,(g;t) with V,, a potential of size O(w?), but the required treatment is somewhat
more complicated than that presented here.

2. Slow solutions. This section contains some background material that is
needed to present the iterative projection algorithm.

2.1. The slow manifold. We begin by defining the concept of slow function
(see [16, Definition 2.1], [17, Definition 1.1]). Let w > 0 parameterize a family of
vector-valued functions v of the variable £, 0 < t < T. Here the dependence of v on
w is not incorporated into the notation for simplicity. We say that v is slow of order

£=0,1,... if v has £ continuous derivatives and there exist wy > 0 such that
&v
sup sup |=——| < oo, j=0,...,0.
w>wo 0<t<T | O J
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We say that v is slow if it is slow to any order ¢.

Let us review some relevant results from the literature. If (go,po) is a point on
the constraint manifold P(ty), there exists (see [19, Theorem 2.2]) a point (¢§, D),
O(w™?) away from (qo, Po), such that the solution of the initial value problem given
by (1) and q(to) = g, p(to) = p§ exists in an w-independent time interval 0 <¢ < T
and is slow. The collection of all pairs (g§,pg) forms, for each ¢y and w, a 2(d — k)-
submanifold P(w;to) of RY x R%. The time-dependent manifold P(w;t) is invariant
with respect to (1).

The dynamics of the solutions of (1) when the initial data (go, po) is in the neigh-
borhood of P(w;to) (but not on it) is studied carefully in [14, section XIV.3] (see
also section 4 below). For the purposes of this paper it is crucial to note that those
solutions oscillate around the slow manifold with frequencies proportional to w. Fur-
thermore, these fast oscillations create in general a drift in the tangential direction;
if k measures the distance between the initial condition and the slow manifold, then
the magnitude of the drift is O(kw™! + k?); see [16, Theorem 2.4].

Also of importance are the following remarks.

Remark 1. With the notation above, the solution (g(¢),p(t)) of the stiff ODEs (1)
with initial condition ¢(to) = ¢§, p(to) = p§ and the solution (g(t),p(t)) of the DAEs
(2) with initial condition q(to) = qo, p(to) = po differ by O(w™2). However, if (1) is
solved with initial condition q(to) = qo, p(to) = Do, the solution (q(t),p(t)) does not
differ from (g(t), p(t)) by O(w=2). In fact while it is true that ¢(t)—q(t) = O(w™2), the
estimation for the velocity is worse: p(t) — p(t) = O(w™!). This happens because an
O(w™?) change in the variable ¢ implies an O(w~2) change in the oscillatory potential
(3), and therefore O(w™?) changes in kinetic energy or O(w™') changes in velocity.

Remark 2. The convergence of the slow solutions of (1) to the solution of the
DAEs (2) as w — oo clearly imply [5]

(4) lim w?g(q(t);t) = A(1).

w—r o0

The following simple examples illustrate these points.

2.2. A linear example. The scalar equation

(5) j=—w?(q— cost)

has the unique slow solution

6 g = Acost p=—Asint A=A = .
(6) q st, D int, W) =—5—3
Since here the constraints® are

g=q—cost=0, g=p+sint =0,

the corresponding constrained problem (2) has the unique solution g(t) = cost, p(t) =
—sint. The fact that A = 1+ O(w™?) implies that both ¢(¢) and p(t) are O(w™?)
away from their constrained counterparts g(t), p(t).

Consider now the initial value problem given by (5) together with the initial
conditions (q(to), p(to)) = (qo,po). We write go = Acosty + po, po = —Asinty + oy,

3Here the constraint manifold P is reduced to a single (time-dependent) point.
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so that pg and oy measure the deviation from the “slow” initial values q(tg) = A costy,
D(to) = —Asintg. The solution of the problem is given by

(7) q(t) = Acost+ pocosw(t—ty)+ @sinw(t—to),
w
(8) p(t) = —Asint —wppsinw(t — tg) + o¢ cosw(t — to);

it oscillates with the fast frequency w around the slow solution. It is important to
point out the presence of the large factor w in (8) which implies that if py and g are
O(w™?), the difference p(t) — p(t) will be O(w™!) in agreement with Remark 1 above.
In particular if (go,po) is taken on the constraint manifold, the velocity p(t) in (8)
will be O(w™!) away from p(t).

Since we have ¢ = —cost and ¢’ = 1, we conclude from (2) that the Lagrange
multiplier is A = cost. On the other hand, on the slow solution g = g(t) — cost =
(A —1)cost, and therefore (4) holds.

2.3. A nonlinear example. As a second example we study a strong spring in
the plane. Consider a unit point mass with coordinates (z,y) moving in a plane. It
is attached to one end of a stiff harmonic spring with unit length at rest and elastic
constant w?; the other end of the spring is linked to a pivot fixed at the origin. If
r = (22 +y?)'/2, the equations of motion

. 9 x
= — —1—
i = —w?(r = )2,
.. 2 Yy
= — —1—
i =—w(r )r

provide a simple instance of (1) withd =2, ¢ = (z,y), k=1, g=r—1, F =0. The
corresponding DAEs (2) read

F=-X2,
T

j=-2,
T

r=1.

Clearly these equations govern the motion of a pendulum in the absence of gravity.
The problem is best analyzed after changing to polar coordinates, when the stiff

ODEs become

d

7= _wz(r_ 1)+TQ.527 dt(rz¢) 207

while the DAEs become
. d ..
R 5(7‘2(15):0, r=1

The solution of the DAEs is trivial: » =1 and ¢ increases linearly with ¢. The
Lagrange multiplier A\ = ¢? does not change with ¢ and represents the centripetal
force exerted by the rod. .

For the stiff ODEs, the areal velocity M = (1/2)r?¢ is a constant of motion, and
we may write

4M?
r3

(9) i=—w(r—1)+
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so that r varies with ¢ as the abscissa of a unit point mass under the effective potential

2 2M2
oJ—(r— 12+

)

r2

which possesses a minimum at the positive root r* = r* (M, w) of the equation
Wt (r — 1) = 4M>.

This root obviously satisfies

40
w2

r* =1+ +O0w™).

If 7(0) = 7* and 7(0) = 0, then r(t) and ¢(t) remain constant (the tension in the
spring exactly balances the centrifugal force so as to have a uniform circular motion).
Thus, in this example, the slow two-dimensional manifold Pin the phase space R4
has the equations r = r* and 7 = 0, and the constraint manifold P is given by r =1,
=0 (the tangent bundle to the unit circle); these manifolds are O(w™?) away from
each other because 7* = 1 + O(w~2). Note that since r* depends on M = (1/2)r2¢,
the relation r = r* mixes coordinates and velocities and on its own does not define a
one-dimensional manifold in the configuration plane R? of the variables (z,y); i.e., the
slow manifold is not the tangent bundle of a one-dimensional configuration manifold.

If the initial values 7(0), 7(0) do not lie on P, the solution r(¢) of (9) is not
constant and undergoes fast oscillations around the equilibrium r* in the effective
potential well. Those fast oscillations are also present in the (tangential) variable ¢
because M = (1/2)r?¢ remains constant as ¢ varies.

The validity of Remarks 1 and 2 in this example is easily checked.

2.4. The bounded derivative principle. Kreiss’s bounded derivative princi-
ple [16], [17] provides a means to identify the slow manifold. We illustrate this for the
equation (5). From the differential equation we see that for ¢ to be bounded indepen-
dently of w (i.e., to have a solution slow to order 2), we must impose ¢ = cost+O(w™?).
Differentiating twice in (5) leads to

d! 4 2

e —w?(§ + cost) = w'q — whcost — w? cost,

and, accordingly, for solutions slow to order 4
1
q = cost+ — cost + O(w™).
w
The iteration of this procedure leads to (6). The slow manifold r = r*, 7 = 0 of the

pendulum may be found in exactly the same way.

3. Iterated projection algorithm IPA. In this section we describe the iter-
ated projection algorithm ITPA. This is based on the application of filtering kernels
that we discuss immediately below.

3.1. Kernels. For our purposes a (filtering) kernel is an even real-valued func-
tion K (¢) of the real variable ¢, —oo < t < oo, supported in the interval [—1, 1], and
having unit mass

/_11 K(t)dt = 1.
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In order to filter at a time ¢y a given vector-valued function v of the real variable ¢
we compute the integral

oo 4
(10) o, :/_ Kg(t)v(t+to)dt:/_6K5(t)v(t+t0)dt,

where K(t) is the scaling of K to the segment [—§, 6], § > 0,
Ks(t) =6 'K (67 '¢).

The performance of a kernel depends on the values of two parameters, u, v. The
number p of vanishing moments of K is the largest integer such that

1
/)K@Hﬁza G=1,...,m
-1

since K is an even function, K (t) = K(—t), p is well defined and odd. If v is slowly
varying and 0 < 1, then v is close to v(to) and the degree of closeness is governed
by u.

LeEMMA 3.1. Ifv is has a bounded (u + 1)st derivative v(*+1) | then

o
(11) / Ks(t)o(t + to)dt — vlto)| < C|[o V]| c5m+
-5

for some constant C > 0 that depends only on K.
On the other hand, if v is oscillates rapidly around zero, then v, ~ 0 and the size
of v is governed by the number v of continuous derivatives of K.
LEMMA 3.2. Assume that v is T-periodic for some T > 0, continuous, and with
. T
zero average (i.e., [, v(t)dt =0).
1. If K has v > 1 continuous derivatives, then

1
< Clolloo

5
(12) ‘/_éKg(t)v(w(t+to))dt o

where the constant C' depends only on 7, K, and v.
2. The same result holds true if K, K', ..., K2 are continuous and K1),
KW are continuous except perhaps at a number of points —1 = t; < ty <
-« <t =1, where they have jump discontinuities.
The proofs of these lemmas are based on Taylor expansion of v and on integration
by parts, respectively (see [12, Lemma 2.2]%). Note that we use the symbol C for a
generic constant that may have different values at different occurrences and that the
choice

(13) §=1L/w,

with L a large constant, ensures that the right-hand side of (12) is small uniformly in
w.

Later the filtering process will be applied to functions v that may be well approx-
imated by a sum of a slowly varying function v and several periodic functions w; with
frequencies \;w. Since filtering is a linear operation, v; will coincide with the sum of
uf, and w;f, and, according to the lemmas, will be close to uy, .

4Only item 1 of Lemma 3.2 is considered in [12], but the proof there works under the weaker
hypothesis in item 2.
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3.2. The algorithm IPA. Suppose that, at a fixed time #o, we are given a
point (go,po) which is close to the slow manifold P, and we wish to obtain a point
(¢,D) = P(qo, po) on P and close to (go,po)- This algorithm is based on the observation
that if we take (go,po) as an initial condition for (1) (i.e., (q(to0),p(to)) = (g0, p0)),
the corresponding solution (g(t),p(t)) (the so-called microsolution) will consist of the
superposition of a slow component and an oscillatory part. According to Lemmas 3.1
and 3.2, filtering the microsolution will lead to a point (g1,p1) close to the value at
to of the slow component, i.e., to a point close to the slow manifold. If (g1, p1) is not
sufficiently close for the application in mind, the procedure may be iterated. In this
way the algorithm IPA is as follows:

1. Initial data: Given €, L, to, (qo,p0), set m = 0.

2. Micro-integration: Solve the stiff problem (1) in the narrow time window
to — 0 <t < tg+ 9, with 6 chosen as in (13) and with initial condition
(q(to),p(to)) = (¢m,Pm)- Denote by (gm(t), pm(t)) the corresponding micro-
solution.

3. Filtering: Filter g, (t) and p,,(t) with a kernel as in (10) to obtain g, ,,
Prnstor S€t Gmt1 = Gy gg0 Pmt1l = Pty

4. Stopping test: If

(14) max (|g(qm+17t0) - Q(Qmat0)|a |g(qm+lapm+lat0) - g(qmapmatO)D 2 €,

set m = m + 1 and repeat steps 2 and 3. Otherwise set (g,p) = P(go,p0) =
(qurlaperl) and StOp.

The stopping criterion (14) will be discussed later. In practice the micro-integra-
tions have to be carried out numerically with a step size h = O(w™!) (see section 5.2
below); it is important to note that, in view of (13), the computational cost is then
independent of w.

4. Analysis. In this section we first analyze carefully the iterated projection al-
gorithm as applied to two model problems that exhibit many—but not all—important
features of the general situation. This analysis is essential to understanding the role
of the different parameters. We then provide a less detailed study of the general case.

4.1. First model problem: Damping of oscillations. We apply the iterated
projection algorithm to the linear equation (5) at time to with go = A costo+ po, po =
—Asinto+og (po, 0o quantify the deviation from the slow solution (A costy, —Asinty)).
As we know, the microsolution is given by (7)—(8).

Let us denote by costy + ¢, sintg + s, and R the results of applying at time tg
the filtering procedure (10) to the functions cost, sin¢, and cosw(t — tp), respectively.
Then filtering the microsolution (7)—(8) leads to the new values

q1 = Acosty + p1, p1 = —Asintg + o1,
with
p1 = Ac+ Rpo, 01 = —As+ Roy.
The old deviations pg, o¢ are multiplied by the factor R. We have taken into account
that since we are assuming the kernel to be even, the output of filtering at ¢y the

function sin(w(t — tg)) is 0. This fact is of particular significance because, as pointed
out before, sinw(t — to) appears in (8) multiplied by the large factor w.



1188 G. ARIEL, J. M. SANZ-SERNA, AND R. TSAI

After iterating the projection m times, we will have the relations
Pm = (1 +R+---+ Rmfl)Ac—i—Rmpo,
Om = —(1+R+---+Rm*1)As+Rmcro

that provide the basis for the analysis that follows.
1. According to (12)—(13), |R| < C/L”. Tt is then possible to choose L large
enough to ensure that |R| < 1, which we assume hereafter. Then, as m 1 oo,
the errors p,, and o, will converge to

_Ac _ As

and accordingly (G, pm) will converge to a limit (¢oo, Poo) close to the slow
point

Goo = ff(b‘o) + Poos Poo = 5@0) + 0co-

2. The convergence factor |R| of the iteration is independent of w.

3. Due to the factor L” in the bound |R| < C/L", kernels with a high number v
of continuous derivatives allow for a faster decrease of the convergence factor
|R| as L is increased.

4. From (11) and (13),

L+l Lrt!
(15) le| < Cw— s| < Om

and, correspondingly, item 1 above leads to the following main estimate:
(16) |goo — Glto)| = Ow™ 1), |poe = Plto)| = O(w™®HY),  w— oc.

5. It should be observed that the error in ¢, poo is determined by the error in
filtering the slow solution.

6. The condition g > 1 must hold if (¢eo, Poo) is to provide a better approxima-
tion to (q(to),p(to)) than the values (q(to), p(to)) of the constrained solution
that give an O(w™2) error.

7. Since L has to be chosen large enough to ensure |R| < 1, the factor L**!
in (15) will result in a large size of the error constants implied in (16). The
algorithm will only be accurate if w is large with respect to L.

8. According to (14), the iteration is stopped when an integer ¢ is found such
that

(17) lger1 — qel <e, [pes1 —pe| < e

It is easy to show that then

_log(1/e) +log (|Ac| + |As| + |po| + |oo])

18 ¢
(18) Log(L/1])
and
R R
ge] € — Poo| € ——e.
(19) |ge+1 — goo| < 1_R° [pe+1 = Poo| < 1_R¢

Note that since R is independent of w, these estimates are uniform in w.
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4.2. Second model problem: Tangential errors. Next we consider the un-
coupled problem for ¢ = (x,y) € R? given by

&= F(x;t), i = —w?(y — cost).
Here (k=1)
g:y—cost:(), g':y'—|—sint:0;

in configuration space R? the constraint manifold Cis a time-dependent straight
line that moves parallel to the z axis. If (xo,yo,Z0,%0) is the starting point for
the algorithm at t = ¢y, we would like the iterates (., Ym, Lm, Um) to move towards

(x0, A costg, o, —Asinty)

as this is the point on P closest to (0, Y0, %0,Y0). We know from the preceding
subsection that y,,, ¥, converge to the desired limits. The variable x is slow and
filtering will change the initial zg into z; with |xq — x| < CLFFL Wkt (see (11)),
thus causing a small glide in configuration parallel to C. At the next iteration zy —
T1 &~ x1 — o because xp is close to xg, and therefore the glide from zy will have
approximately doubled. As more projections are carried out, xz,, will move away
linearly from xg and, analogously, &,, from Zy. This is markedly different from the
situation for the y component, where, as we saw, errors introduced at an iteration are
subsequently dampened. In spite of these tangential displacements the algorithm will
succeed because the iteration is stopped according to the criterion (14), i.e., when an
integer ¢ is found for which (see (17))

[Yer1 — ye| < e, [Yer1 — Je| < e

In fact we know that ys11, ge+1 will be close to their target as in (19). Moreover,
since the number of required iterations (18) is logarithmic in e,

|Te41 — 20| = (10g(1/€) ”H))a |Tey1 — 0| = (log(l/e) “H))

Note that, except for a logarithmic factor, the overall error in the algorithm is
governed by the errors in filtering the slow variables x and & together with the errors
in filtering the slow components of the y, y variables. In other words the error is
essentially independent of the distance of the initial (go,po) to the slow manifold P.

4.3. The general case. In the preceding model problem, the variables y and
y transversal to the constraints are not coupled to the tangential variables z, x.
In general, all variables will be coupled (as illustrated by the pendulum example of
section 2.3), and, in particular, there will be an influence of the fast vibrations onto the
tangential dynamics. In order to investigate these issues, we now turn to the system
(1) where, to simplify the exposition, we consider that F' and g are independent of t.
In this autonomous case we may also take ty = 0.

4.3.1. Setup. If the algorithm starting point (qo,po) is close to the constraint
manifold 77 then its orthogonal projection (go,pp) onto 77 is well defined (more pre-
cisely, Qo is the orthogonal projection in R¢ of gq onto C and Py Do is the orthogonal
projection of pg onto the vector space 7Ty tangent to C at qo); see Figure 1. Similarly,
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/

Fic. 1. The diagram shows the space R4 of the configuration variable q. In the DAE q is
constrained to be on C and p is constrained to be in the tangent space To at q. The point qo € R4
and the velocity vector pg at qo are projected onto the constraint manifold P to yield Go and po and
onto the slow manifold P to yield qo and po.

let (Go,po) be the (w-dependent) point on the slow manifold P whose orthogonal
projection onto P coincides with (o, po); for w large, (o, Po) is well defined and

(20) |go — ol + [P0 — Po| = O(w™?).
The next iterate (¢1,p1) is obtained by filtering (¢(t),p(¢)), |t| < L/w, the microso-

lution starting from (qo,po), and our aim is to show that (g1, p1) is closer to (go,Po)

than (o, o).
In a neighborhood of gy in configuration space, we will decompose the dynamics

of (1) into components orthogonal and tangent to C. Let @, and Q|, respectively,
denote full-rank & x d and (d— k) x d matrices such that the kernel of Q is the vector
space 7y tangent to C at qo, the kernel of Q| is the vector space Oy orthogonal to C
at qo, and, for each v € R%,

0> = [Quolzr + [QvlEa -

In particular Q restricted to the k-dimensional subspace Oy C R? is an isometry onto
R¥, and Q restricted to the (d — k)-dimensional subspace Ty C R is an isometry
onto R4~*. Furthermore the d x d matrices QT Q| and QIF{Q” are the orthogonal

projectors of R? onto Oy and Ty, respectively.
The definitions of gy and py imply

(21) Q) (g0 — qo) =0, Q|(po — po) = 0, Q1po =0.

Let us denote by « an upper bound for the orthogonal components of ¢y — gy and
Po — DPo:

(22) |91 (90 — )| < &, |Q1(po —po)l = |Q1po| < k.

We have to assume that « is small: in a nonlinear situation it is not expected that
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the algorithm will work if it starts from (qo,po) far from the constraint manifold.’?
However, the applications presented later in the paper demand that no relation is
assumed between x and 1/w; these must be seen as independent small parameters.
The behavior of the microsolution (g(t),p(t)) varies substantially with the size of
Kk relative to 1/w. For instance, if k ~ 1/w?, then the energy in the transversal
oscillations will be small and the dynamics of the microsolution will be close to that
of the slow solution. The case k = 1/w treated in [14] corresponds to oscillatory energy
that remains bounded as w — oo. On the other hand, larger values of x will allow
fast oscillations with larger amplitudes, which, in principle, may have a significant
influence on the slow components of ¢, p and therefore impair the performance of the
algorithm. In what follows we restrict our attention to the worst case where & is large
relatively to 1/w (large oscillatory energy). In that scenario the distance from (g, po)
to (Go,po) (of order k) is much larger than the distance (see (20)) between (go, o)
and (qo, Po), so that we may consider that our aim is to show that (p1,¢1) is closer to
(EI\OJ/Q\O) than to (CIo,po)'

After decomposing q(t) = go + (¢(t) — qo) and observing that filtering is a linear
process, it is clear that we have to show that the outputs of filtering the functions

(23) y(t) = Qu(a(t) — @),  =(t) = Qyla(t) — )
are sufficiently small, while the outputs of filtering the functions
(24) y(t) = Quip(t), (t) = Qp(t)

are close to Q1 po = 0 (see (21)) and to Q) po, respectively.

4.3.2. Transversal oscillations. From (23) and (22), it follows that y(0) =
O(k). Similarly (24) and (22) lead to y(0) = O(k). From (1) the differential equation
for y € R* is

(25) j=0Q1F(q) —w?Q.14d(9)"9(q).

In the short micro-integration interval |t| < L/w, the value of ¢(¢t) will not deviate
much® from its initial value q(0), and therefore we may replace g’(q) by the constant
96 = ¢'(qo). We also note that

9(q(t)) = g(q(t)) — 9(q) = ¢'(Go)(q(t) — Go) = go(a(t) — Go)

and, because g is in Oy,
9o(a(t) — @) = 9091 Q1 (4(t) — Po) = 9o QT y(®)-

Finally, Q| F(q) = O(1), while the second term in the right-hand side of (25) is
O(kw?) and is therefore large relatively to w (recall that we are studying the regime
where kw is large). In this way, going back to (25), we may write the approximation

. T
Yy = —sz()y, MO = QLgé 96Q£7

5Note that if (go,po) is far from the constraint manifold, the definition of (go,po) may not be
possible.

6Roughly speaking, z(t) — x(0) = O(w™1!) and y(t) — y(0) = O(x). This may easily be rendered
rigorous by a Gronwall argument.
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with a relative error O(k) in the O(kw?) right-hand side. The matrix M is symmetric
and, since g, has full rank, it is also positive definite; therefore

(26)  y() cos(wy/Mot)y(0) + (wy/Mo) " sin(w/Mot)j(0),
(27) §(t) = —wy/ M sin(wy/Mot)y(0) + cos(wy/Mot)3(0).

These equations are very similar to (7)—(8), which were analyzed in detail. The
variable y(t) undergoes linear oscillations with amplitude O(x) and frequencies w\; >
0, where A\?, i = 1,...,k, are the eigenvalues of My. Thus the filtering procedure,
after choosing the filtering interval length appropriately, will dampen y and produce
a point (q1,p1) closer to P than the original (go, po). Again the choice of an even filter
is essential for dealing with the large first term in the right-hand side of (27).

Of course the analysis above may then be taken up from (g1, p1) in lieu of (go, po)

with a correspondingly smaller value of the parameter .

4.3.3. Tangential dynamics. The initial conditions for the tangential part of
the microsolution are (0) = 0 € R4 (see (21) and (23)) and @(0) = Qpo = QDo
(see (21) and (24)). The projection of (1) onto 7o leads to

i=QIF(q) —w’Qug'(9)"9(q) = QF(q) —w’Q)g'(q)" 9y QLy(t).

The product Q) ¢'(q) vanishes at ¢ = go and, thus, the acceleration & will not attain
values of magnitude O(kw?) as §j does. Freezing ¢'(q)T at ¢ = g as we did in (25)
will not do now, and we have to consider first-order terms:

g(a®)T ~ gy + Bola(t) — @)

(By is the corresponding Jacobian matrix). Moreover, since Q| (q(t) — go) is negligible
with respect to Q) (¢(t) — qo), we may replace (q(t) — go) by its projection onto Oy,
and that would result in an equation

i=Q)F(q) —w*Coly(t),y(t)]

for a suitable bilinear operator Cy, whose actual form is of no consequence. Finally,
since w?Co[y(t), y(t)] = O(k2w?) is large, we may disregard Q) F(q) to obtain

(28) &= w?Coly(t), y(1)],

an equation which shows that, in the regime under consideration, the tangential ac-
celeration is mainly induced by the transversal fast oscillations. (This coupling is of
course not present in simple cases where ¢’ is constant and By = 0.)

From (26), we know that y(¢) is a combination of harmonic contributions with
O(k) amplitudes and frequencies wl;; then the right-hand side of (28) will be a
combination of sine and cosine functions with amplitudes O(x?) and frequencies w|\; &
Aj|. In particular the resonant combinations w|A; — A;| = 0 will be present. In other
words

i =w?(l + D(t)),

where £ is an O(k?) constant vector and D(t) is oscillatory with Fourier modes with
O(x?) amplitudes and large frequencies proportional to w. Additionally, since the
first term in the right-hand side of (26) is dominant, the function D(¢) is even, except
for an O(k?/w) perturbation.
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Integrating once, we may write
t
i(t) = Qpo + w?tl —|—/ w?D(s) ds.
0

Here the large w?t/ term is annihilated by the (even) filter, and the same is true for the
dominant odd part of the integral. The even part of the integral is highly oscillatory
with small O(x?) amplitude (integration brings in a 1/w factor); its contribution to
p1 will also be O(k?), but with a smaller error constant by virtue of the dampening
effected by the filter. Thus Q)p; will be O(k?) away from Q)|po-

A new integration yields

2 t s
ﬂf(ﬂ:thﬁowQ%H/ ds/ w? D (u) du;
0 0

the iterated integral is oscillatory with small O(k?) amplitude, and tQ)p, will be
destroyed by the filter. The quadratic term w?(t?/2)¢, |t| < L/w, will at most produce
a small O(k?) contribution to ¢1; in fact for a kernel with 1 > 3 vanishing moments,
that contribution will actually vanish. We conclude that Q)(g1 — qo) = O(k?); the
tangential gliding of ¢1, p; will be negligible relative to the distance between the
starting point and the slow manifold.

5. Numerical experiments: Computing slow points. We now provide ex-
amples on the application of IPA. This section illustrates the direct application of the
technique to find slow points and compute Lagrange multipliers. The next section
explores possible combinations of the projection algorithm with ODE solvers.

5.1. A test problem. We use the test problem with d = 4, ¢ = (21, y1, Z2, y2)
given by”

Xr1 — T2

. X
B =—wi(r — 1) = —wi(r2 — 1)
1 71,2

1 1= Y2
I 2y — 1) A2

i = —wi(r —1) >

T1 1,2
xry —x
.. 2 1 2
Iy = +wy(rie —1)———
1,2
. 2 Y1 — Y2
Y2 = + w2(7’1)2 - 1) )
1,2

where
r = (2% +y3)1/?, r2 = ((z1 — 22)* + (y1 — y2)2)1/2.
For this system, k£ = 2 and
g1(q) =r1—1, golg) =m12—1.

These differential equations govern the planar motion of two unit point masses: the
first is joined to the origin through a stiff spring of elastic constant w? > 1 and the
second is joined to the first through a second stiff spring of elastic constant w3 >> 1.

"Note that now = and y represent Cartesian coordinates in the plane, and not tangential and
transversal components as they did in the preceding section.
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In the limit where w; — o0, we — o0, the springs become rigid rods of unit length
and the system becomes a double pendulum with no gravity. The dynamics of this
simple test problem includes all the features we are interested in (fast transversal
oscillations, coupling from the fast oscillations to the slow tangential dynamics, etc.).
More realistic problems with large values of d will be considered in future work.

The experiments reported below have w; = ws = w; simulations with w; = w,
we = aw, with a a constant of moderate size, were also carried out, but do not
provide additional insights. We also performed experiments where an external force
of moderate size, such as gravity, was added to the model; again the corresponding
results are very similar to those presented here.

The algorithm (and the underlying theory) require that w > 1. The experiments
reported have w = 100, 1000, 10000 (spring constants 104, 105, 10%); Figures 2 to 6 in-
dicate that simulations with w significantly smaller than 100 would yield unacceptably
large errors.®

5.2. Algorithmic details. All experiments in this paper use the piecewise cubic
filter from [23]:
K(t) = 2 —20t| - 8t +8[t)2, 0< |t <1/2,
2— 2|¢| +8t2 — B¢, 1/2< |t <1
This has @ = 3 vanishing moments and satisfies the hypothesis in item 2 of Lemma 3.2
with v = 2. The parameter L that determines the filtering window (see (13)) is taken
L = 67 in all experiments. Micro-integrations are performed by the standard Verlet
algorithm with step size h = (27 /w)/6; since the micro-integration window has length
proportional to 1/w the number of steps in each micro-integration is independent of
w.

The tolerance ¢ in the stopping criterion (14) is 1072 in the experiments with
w = 1000 or w = 10000 and 10~7 when w = 100.

5.3. Projecting onto the slow and constraint manifolds. We used the
algorithm to project onto P the point

(29) T = ]-7 y1 = 0257 T2 = 27 Y2 = 07
(30) 1 =0, 71 = —0.5, 22 =0, 72 = 0.5,

when w = 1000 and 10000; the choice of ty is inconsequential as the problem is
autonomous. For both values of w the algorithm takes five iterations to meet the
required tolerance of 102, Table 1 displays the evolution, as the iteration proceeds,
of the values of the holonomic constraint functions gi, g and the implied velocity
constraints §1, g2. At the starting configuration in (29) the violation of the holonomic
constraint is of the order of 10~2; for w = 10000 this implies an enormous ~ 10° initial
potential energy in the springs. We observe that in the first iteration the behavior
of the algorithm is the same for both values of w. Away from the slow/constraint
manifolds, the main effect of each iteration is the dampening of the fast oscillations
in the microsolution, and it was shown in the preceding section that such dampening
is uniform in w. For w = 1000 the size of the components of g, § converge to values
~ 1075, For w = 10000 the limit values are 100 times smaller, in agreement with the

8The minimal value of w for the algorithm to operate successfully is of course problem-dependent.
It also depends crucially on the quality of the filter: if the constant C' in (12) is large, then § has to
be large, and this decreases the accuracy in recovering the slow components; see (11).
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TABLE 1

Reduction of the constraint functions as the iterated projection proceeds from the starting point
(29)—(30).

w = 1000
g1 g2 g1 g2
0| 3.08(—2) 3.08(—2) -—121(-1) —242(-1)
1 —3.40(—4) —2.41(—4) 2.36(—3) 5.25(—3)
2 9.71(—7) 8.11(—7) 2.01(—5) 1.18(—5)
3 1.01(—6) 8.95(—7) 2.43(—6) 1.61(—6)
4 1.01(—6) 8.95(—7) 2.43(—6) 1.61(—6)
5 1.01(—6) 8.95(—7) 2.43(—6) 1.61(—6)
w = 10000
91 92 9 g2
0| 3.08(—2)  3.08(—2) —1.21(—1) —242(—1)
1| —3.40(—4) —241(—4)  234(-3)  5.28(—3)
2| —3.00(-8)  7.49(-8)  1.75(=5)  1.02(—5)
31 1.01(—=8)  891(—9)  3.00(—8)  1.45(—8)
4| 1.01(-8)  895(-9)  243(-8)  1.61(-8)
5| 1.01(-8)  895(—9)  243(-8)  1.62(—8)

fact that the slow manifold is O(w~2) away from the constraint manifold g = ¢ = 0. As
a side remark, let us comment that, in view of (4), the table shows that the Lagrange
multipliers associated with g; and go have values 1.01 and 0.895, respectively.

Note that the closeness between the slow and constraint manifold for w large
opens the possibility for an alternative use of the algorithm: in order to find initial
data (o, po)) for the DAEs (2) one may choose a very large value of w and project
onto the slow manifold an initial guess (o, po). Of importance here is the fact that,
as pointed out above, the computational cost of the projection is independent of w.

As a second example we started from the point

(31) /x\l = ]-7 :/y\l = 07 /x\Z = 27 @\2 = 07

(32) @ =0, Jy = —0.5, T2 =0, o = 0.5,

which clearly satisfies the constraints g(q) = 0, ¢’(¢)p = 0 and therefore is not far
away from the slow manifold. With w = 1000 after two iterations the algorithm yields
a point

(33) 771~ 1.00000150, @1 =0, 2o A 2.00000275, y2 =0,

(34) 7, =0, 7, ~ —0.4999951, T =0, Uy ~ 0.4999973.
Both springs have been stretched slightly as a consequence of the centrifugal effect of

the nonzero tangential velocities. For w = 10000, two iterations are also required and
the slow point given by the algorithm is

(35) 71 ~ 1.0000000150, 71 =0,
Ty ~ 2.0000000275, U2 =0,

(36) T =0, 7, ~ —0.499999952,
To =0, U ~ 0.499999973.

These results show once more the O(w™2) distance between P and P.
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5.4. Computing Lagrange multipliers. Assume that it is required to inte-
grate the DAEs (2) with compatible initial data q(to), p(to). At each step, the DAE
solver will use an iteration to find the next values of ¢, p, A. While at the very first
step the initial data q(to), p(to) provide good starting guesses to initialize ¢ and p in
the iteration, it may be difficult to initialize the Lagrange multipliers for which no
initial condition is available. After recalling (see (4)) that A\ ~ w?g(q(to)), we may ap-
ply the iterative projection algorithm to approximate A. Here is an example. For the
configuration in (33), g1 = 1.49 x 1075, go = 1.23 x 107°, and for the configuration in
(35), g1 = 1.50 x 1078, go = 1.25 x 10~8. We conclude that the value of the Lagrange
multipliers A1, A2 at the point (31)—(32) have values ~ 1.50 and ~ 1.25, respectively.
If the multipliers have to be determined with great accuracy, it is of course possible
to resort to a Richardson extrapolation with respect to w.

6. Numerical experiments: Computing slow solutions. In this section we
discuss several possibilities for numerically computing slow solutions (¢(t),p(t)). As
an example we use again the test problem of the preceding section. We shall compute
the slow solution for 0 < ¢ < 10 which coincides at ¢t = 0 with the slow point (g, Po)
obtained by projecting the initial point (31)~(32) onto P. We shall report errors in
the variables ¢ and p at the final time ¢ = 10 measured in the Euclidean norm in
R%; of course here “error” refers to the difference between the result provided by the
particular algorithm being tested and the true ¢(10) or p(10) (these were found by
the algorithm in section 6.3 with RelTol = 10712, AbsTol = 10~ 14).

We emphasize that the aim of this experiments is to test the iterative projection
algorithm and to illustrate the theory that underlies it; a full comparison between
the efficiency of the different approaches is out of the scope of this contribution.
For this reason we limit the methods tested to simple integrators like RATTLE,
the classical fourth-order Runge—Kutta formula, or the codes in the MATLAB suite.
When comparing the results of the different approaches, one should keep in mind the
small dimensionality of the test problem and recall that while the work in explicit
ODE solvers grows linearly with the dimension d of the problem, DAE algorithms are
necessarily implicit and may require an amount of work that grows like a higher power
of d (the details vary with the implicit solver and with the sparsity of the problem).

6.1. Solving the DAE. It is clearly possible to obtain an approximation to
(g(t),p(t)) by solving numerically the associated DAE with initial condition (g(0), p(0)).
We have implemented the well-known method RATTLE (see, e.g., [18]), with the
implicit equations solved by Newton iteration and the required Jacobian matrices
computed analytically. The errors in approximating the slow solution are given in
Figure 2, where the step sizes are H = 1/8,1/16,... and w = 100, 1000, 10000 (in
order to render comparisons easier, the axes in this figure and those in the figures
that follow share the same scaling). As we know, the difference between the exact
DAE solution and the target (q(t), p(t)) is O(w™2) in both ¢ and p, and this explains
the saturation of errors as H — 0. As a consequence, for w = 100 this method
may only provide a very rough approximation to the solution sought. We note that
this limitation will not disappear if RATTLE were replaced by a more accurate DAE
solver.

6.2. Starting from the constraint manifold. Next we try to compute nu-
merically (q(t),p(t)) by solving the stiff ODE with the point (31)—(32) as an initial
condition. This point is compatible with the constraints and accordingly O(w=2) away

from the correct initial data (g(0),p(0)). We performed this integration with each of
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Fi1a. 2. Errors for w = 100 (circles), w = 1000 (stars), w = 10000 (diamonds) when the slow
solution is approximated by numerical integration of the DAE.
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Fi1G. 3. Errors for w = 100 (circles), w = 1000 (stars), w = 10000 (diamonds) when the slow
solution is approximated by numerical integration with odel113 starting from the constraint manifold.

the codes from the MATLAB suite, including the implicit solvers ode15s, ode23s,
0de23t, ode23tb; the results reported correspond to the explicit high-order Adams
code 0de113 as this turned out to be the most efficient. Six pairs of relative and ab-
solute tolerances were tested: (RelTol, AbsTol) = (1073,107°) (the default option);
(104,1077); ...; (1078,10~!1). The results are given in Figure 3. The code chooses
very small step sizes. Moving from w = 100 to w = 1000 multiplies the computational
effort by 10; and the increase is even larger when going from w = 1000 to w = 10000.
With larger tolerances, the computational effort is virtually independent of (RelTol,
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Fi1a. 4. Errors for w = 100 (circles), w = 1000 (stars), w = 10000 (diamonds) when the slow
solution is approrimated by numerical integration with odel113 starting from the slow manifold.

AbsTol); for those tolerances the choice of step size is dictated by stability consider-
ations, and demanding additional accuracy does not require a substantial decrease in
step size with a high-order integrator. However, for stringent tolerances, the code tries
to follow accurately the small ripples that result from the starting point being close
to the slow manifold P but not on it. As we know from Remark 1 in section 2.1, those
ripples are of amplitude O(w™?2) in ¢ and O(w™!) in p. In that regime of stringent
tolerances, a decrease in tolerance does imply an increase in computational effort.
At the same time, in that regime, the reported errors saturate, because the ode113
integration errors become negligible with respect to the difference between (g(t), p(t))
and (g(t), p(t)). For w = 1000 the saturation takes place at around 10~° in g and 1073
in p, for w = 10000 at around 10~7 and 10~%, respectively. Clearly this technique is
both more expensive and more inaccurate than that based on solving the DAE.

6.3. Projecting the initial condition onto the slow manifold. Next we
integrated with each of the codes in the MATLAB suite the stiff ODE but using the
iterative projection algorithm to identify the correct starting point (¢(0),p(0)). Again
the best performance corresponded to ode113, whose results are presented in Figure 4.
Comparison with Figure 3 shows that the iterative projection destroys the saturation
of errors, and it is now possible to obtain high accuracy. However, the computational
costs here are high and approximately coincide with those in Figure 3: we are still
solving the stiff equation and, even though the numerical solution starts on the slow
manifold, the integration errors will force the solution to leave that manifold. We also
note that the errors in p are considerably larger than the errors in q.

We remark that also for the implicit codes odel5s, ode23s, ode23tb the com-
putational load for a given tolerance is roughly the same whether the starting point
is (g(0),p(0)) or (g(0),p(0)). Only for ode23t, based on the trapezoidal rule, inte-
grations from (g(0),p(0)) are more expensive than integrations from (¢(0), p(0)) (the

trapezoidal rule differs from the other implicit methods tested in that it is not strictly
stable at infinity).
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Fi1a. 5. Errors for w = 100 (circles), w = 1000 (stars), w = 10000 (diamonds) when the slow
solution is approximated by numerical integration with ode113 starting from the slow manifold and
projected back att =1,2,...,9.

6.4. Projecting periodically onto the slow manifold. As in the preceding
subsection, the integration starts from (¢(0), p(0)) and the results reported correspond
toodel113. Attimest =1,2,...,9, the integration is halted and the numerical solution
projected onto the slow manifold P; the integration is then taken up from the projected
point. (Note that in order not to give this technique an unfair advantage, we do not
project at the final time where errors are measured.) The results may be seen in
Figure 5. For w = 1000 and w = 10000 this technique is a clear improvement over
that of the preceding subsection: the errors are smaller and the computational cost
lower because the solution is not allowed to move too far away from the slow manifold.
For w = 100 the errors are independent of the tolerance as the error of integrating
with ode113 is dominated by the O(w™?) errors of the projections at t = 2,3,.... In
this connection we also observe that for w = 1000 the errors saturate at ~ 5 x 1078
in ¢ and 5 x 10~7 in p, again due to the presence of the projection errors.

It is clear that the projection may be applied more or less frequently than at
t =1,2,..., perhaps monitoring the growth in the constraint functions ¢(q), ¢'(¢)p
as the integration proceeds. Rather than attempting to fine-tune the frequency of
the projections, we explore in the next subsection the possibility of projecting at each
function evaluation of the integrator so as to pick information only from the slow
manifold.

6.5. Projection onto the slow manifold at each function evaluation. To
be definite we shall illustrate the technique by means of the classical fourth-order
Runge-Kutta (RK4) scheme, but it may be combined with any other integrator.

The system being solved is written in first-order format z = ¢(z), z = (g,p);
given the approximation z, at the beginning of a step, RK4 evaluates ¢ at four stage
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vectors,
Zl = Zn,

72 =z, + gqﬁ(Zl),

H
73 =z, + 7;5(22),
Z4 =2zn+ H¢(Z3)a

and then sets

I (621 + 26(22) + 26(2%) + 6(2%).

(37) Znt1 = Zn + 5

We change the computation of the evaluation points into (as before, P stands for
iterative projection)

Zt =Pz,

72 = ]P’<zn + gd)(Zl)),

73 = ]P’(zn + §¢(Z2)),
Z* =P(z, + Hp(Z?%))

and replace (37) by

(39) Zuat = Pan + o (0(2) + 20(27) + 20(7%) + 9(7*)).
Thus we only evaluate ¢ at points on the slow manifold. The modification requires
using P four times per time step.

Results are reported in Figure 6 for step sizes H = 1/2,1/4,.... We first note
that, as distinct from the other experiments based on integrating the stiff ODE, the
integration now works satisfactorily with large step-lengths commensurate with the
slowly varying character of the target solution. However, the savings afforded by the
large values of the step-length are partly offset by the fact that each time step of the
RK4 algorithm is very expensive due to the need to iterate the projection at each of
the four stages. We also observe that now the errors in the g and p variables share
the same behavior, as was the case when integrating the DAE, but not in the other
experiments based on integrating the stiff ODE.

For w = 10000 the errors in the algorithm are mainly due to the RK4 integrator
and follow an O(H?*) pattern. In fact the slopes in the figure are slightly higher
than that associated with an order four method due to the fact that halving H less
than doubles the computational effort because the average number of iterations of
the projection algorithm at each stage decreases slightly. For H = 1/2,...,1/16
the behavior of the method with w = 1000 and w = 10000 is essentially the same;
work and accuracy are w-independent. However, with w = 1000 and H = 1/32 and
H = 1/64 the O(w™*) projection errors become important; when H is small, halving
the step-length leads to an increase in error as more projections are performed. For
w = 100 the computational cost for fixed H is slightly smaller than for w = 1000 or
10000, thus reflecting that we used a less demanding tolerance to stop the iteration.
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Fi1a. 6. Errors for w = 100 (circles), w = 1000 (stars), w = 10000 (diamonds) when the slow
solution is approrimated by numerical integration with the classical RK4 algorithm with projection
before each function evaluation.

The RK4 integration provides a hard test for the accuracy of the iterative pro-
jection algorithm. For instance, at each time step, the point Z2* = z,, + (H/2)¢(Z1)
to be projected is O(H?) (uniformly in w) away from the slow manifold; in view of
the factor w? in the oscillatory potential (3) this implies an oscillatory energy that
grows unboundedly as w increases. Several iterations (typically 3-5) are required to
meet the stopping criterion (14) when projecting Z2* to find Z2. The analysis in
section 4.3.3 predicts that those iterations introduce an O(H*) tangential error in
the projected Z2; this error changes z,41 by an O(H®) amount, compatible with the
overall algorithm being fourth-order accurate.

Comparing all of the results reported above, it appears that for the problem at
hand and w = 10000 the DAE solver is the best option if high accuracy is not necessary;
if it is, the projected RK4 is the most efficient choice.

In all the experiments in this section the aim has been the computation of the
slow solution. However, as discussed in the theory in section 2 and borne out by the
experiments above (see Figure 2), for w suitably large there is a negligible difference
between the slow and constrained solutions. This opens the possibility of obtaining
approximations to solutions of the DAEs (2) by choosing a very large value of w and
finding the corresponding slow solution of the stiff system (1) with the IPA+RK4
technique described in this subsection. Note in this connection that, since the com-
putational complexity of the IPA+RK4 numerical algorithm is independent of w (cf.
Figure 6), it is feasible to increase the stiffness in order that the slow solutions provide
an extremely accurate approximation to the solutions of the DAEs. In those circum-
stances one may interpret the algorithm as a numerical method to solve the DAEs.
Such a numerical method differs from standard DAE solvers in that these require at
each step the solution of a system of algebraic equations and may need an amount of
work that grows like a power of the dimension d (the details vary with the implicit
solver and with the sparsity pattern of the problem).
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7. Conclusions and future work. We have introduced and analyzed an algo-
rithm that projects points in the phase space of a stiff mechanical system onto the
associated slow manifold. The algorithm is based on ideas (micro-integration, filter-
ing) from the field of multiscale simulation and is applicable to initializing integration
algorithms for both stiff ODEs and DAEs, including the initialization of Lagrange
multipliers.

We have shown that by applying the proposed iterated projection algorithm,
conventional numerical integrators may enjoy the benefits of improved accuracy and
reduced computational cost. Much future work is needed to identify the integrators
that are best suited for this approach, to construct optimal filters, and to assess the
merits of the new technique in realistic applications.

By performing the iterated projection before each function evaluation, it is possi-
ble to integrate DAEs with ODE solvers. While this approach—which does not require
one to solve algebraic equations—is unlikely to be as efficient as standard DAE solvers
for small problems, its application to large problems is worth considering.
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