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Abstract. We present a new approach to perform high-order averaging in oscillatory periodic or quasi-periodic dynamical
systems. The averaged system is expressed in terms of (i) scalar coefficients that are universal, i.e. independent of the system
under consideration and (ii) basis functions that may be written in an explicit, systematic way in terms of the derivatives of
the Fourier coefficients of the vector field being averaged. The coefficients may be recursively computed in a simple fashion.
This approach may be used to obtain exponentially small error estimates, as those first derived by Neishtadt for the periodic
case and Simó in the quasi-periodic scenario.
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INTRODUCTION

The papers [1], [2],[3] present a new approach to perform high-order averaging in periodic or quasi-periodic dynamical
systems. When this approach is used, the averaged system is expressed in terms of (i) scalar coefficients that are
universal, i.e. independent of the system under consideration and (ii) basis functions that may be written in an explicit,
systematic way in terms of the derivatives of the Fourier coefficients of the vector field being averaged. The coefficients
may be recursively computed in a simple fashion. Thus the averaged system and the associated change of variables are
not found here by performing successive changes of variables, as it is the case in conventional approaches.

The new methodology is based on the combinatorial techniques currently used to analyze numerical integrators.
It preserves geometric properties and may also be applied to other tasks (e.g. to find formal conserved quantities in
Hamiltonian problems, see [2]).

FORMAL RESULTS

Assume that the problem to be averaged has been rewritten [4], [5] to take the familiar format:

d
dt

y = ε f (y, tω), (1)

y(0) = y0 ∈ RD, (2)

where ε is a small parameter, f = f (y,θ) is smooth and 2π-periodic in each of the components θ j, j = 1, . . . ,d, of
θ , i.e. θ ∈ Td , and ω ∈ Rd is a constant vector of angular frequencies assumed to be non-resonant, i.e. k ·ω 6= 0, for
each k ∈ Zd . When d = 1 the right-hand side of (1) is periodic in the variable t; for d > 1 the time-dependence is
quasi-periodic. We denote by fk the Fourier coefficients of f (y,θ) so that

f (y,θ) =
∑
k∈Zd

eik·θ fk(y). (3)

As shown in [2], (1) may be quasi-stroboscopically averaged to get a autonomous system

d
dt

Y = ε F(Y,ε ), F(Y ) = F1(Y )+ ε F2(Y )+ · · ·+ ε
n−1Fn(Y )+ · · · (4)



The functions Fn are explicitly given in terms of the commutators (Lie brackets) of the functions fk in (3) as

Fn(y) =
∑

k1,...,kn∈Zd

1
j

β̄k1···kn [[· · · [[ fk1 , fk2 ], fk3 ] · · · ], fkn ](y), (5)

where the scalar coefficients β̄k1···kn are universal, i.e. while they depend on ω , they are independent of f (y,θ) and
may be computed by means of simple recursions. The solution of (1)–(2) as a formal series may be written as

y(t) =U(Y (t), tω,ε ),

where Y is the solution of (4) with initial condition Y (0) = y0 and U is a change of variables parameterized by θ ∈ Td

y = Y + ε Ǔ(Y,θ ,ε ); Ǔ(Y,θ ,ε ) = u1(Y,θ)+ · · ·+ ε
n−1un(Y,θ)+ · · · (6)

The functions un (as the functions Fn in (5)) may be computed explicitly in terms of the fk and of a family of scalar
universal coefficients κ that (as the coefficients β̄ for Fn) may be computed recursively.

The fact that (5) is constructed in terms of commutators implies that if the Fourier coefficients fk, k ∈ Zd , belong to
a specific Lie subalgebra of the Lie algebra of vector fields (e.g. each fk is Hamiltonian) then the quasi-stroboscopic
averaged system (4) will also belong to the same Lie subalgebra (e.g. averaging a Hamiltonian system will lead to a
Hamiltonian system). Similarly the change of variables (6) will belong to the corresponding Lie group (in the example,
the change of variables will be canonical).

ERROR ESTIMATES

It is well known that the series in (4) and (6) are in general divergent and have to be truncated in order to approximate
the solution y of (1)–(2). Neishtadt [6] and Simó [7] have proved that those truncations may be performed so as to yield
errors that are exponentially small in ε . The present technique is very well suited to derive such estimates as shown in
[3] for the periodic (d = 1) case. Here we deal with the quasi-periodic (d > 1) case. We assume that f satisfies:
Assumption A. There exist R > 0, µ > 0 and an open set U ⊃KR, such that, for each θ ∈ Td , f (·,θ) may be extended
to a map U → CD that is analytic at each point y ∈KR. Furthermore the Fourier coefficients fk of f have bounds

∀k ∈ Zd , ‖ fk‖R ≤ ake−µ|k|, ak ≥ 0,

where the ak are such that
M =

∑
k∈Zd

ak < ∞.

An additional hypothesis required to deal with small denominators that appear in the recursions for the coefficients
β̄ and κ is the assumption that the vector ω ∈ Rd satisfies a strong non-resonance condition

∀k ∈ Zd\{0}, |k ·ω| ≥ c|k|−ν (7)

for some constants c > 0 and ν > 0.
We can then prove:

Theorem 1 Suppose that f satisfies the requirements in Assumption A and ω satisfies the condition (7). The applica-
tion of the truncated change of variables

y = Y + ε Ǔ (N)(Y, t,ε)

with
Ǔ (N)(y,θ ,ε) = u1(y,θ)+ ε u2(y,θ)+ · · ·+ ε

N−1uN(y,θ)

and

|ε | ≤ ε 0, ε 0 = ε 0(N) =
R

4LNν+1 , L =
2M νν

c µν eν
,



to the initial value problem (1)–(2) results in a problem

d
dt

Y = ε
(
F(N)(Y,ε)+R(N)(Y, t,ε )

)
, Y (0) = y0,

where
F(N)(y,ε) = F1(y)+ ε F2(y)+ · · ·+ ε

N−1FN(y)

(the functions Fj are as defined in (5)). The remainder R(N) possesses the bound

‖R(N)(·, t,ε)‖R/2 ≤
5|ε/ε0|N

1−|ε/ε0|
M.

In particular, assume that for given ε , with |ε | ≤ R/(4eL), N is chosen as the integer part of the real number(
R/(4eL|ε|)

)1/(ν+1) ≥ 1. Then the following exponentially small estimate holds true:

‖R(N)(·,θ ,ε )‖R/2 ≤
5e2

e−1
M exp

(
− K
|ε |1/(ν+1)

)
, K =

(
R

4eL

)1/(ν+1)

.
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