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A Simplified Variable Metric Hybrid Monte Carlo Method
M.P. Calvo1, I. Rodrigo and J.M. Sanz-Serna

IMUVA. Universidad de Valladolid, Spain.

Abstract. We present a variable metric Hybrid Monte Carlo method following the ideas in [3], and propose a choice of such
a metric which results efficient in the case of the sampling from the potential of a stiff spring. This is the first step in the
extension of these ideas to deal with more general potentials appearing in Molecular Dynamics.
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INTRODUCTION

The Hybrid Monte Carlo method, first introduced in [2], allows to sample from probability density functions of the
form

π(x) ∝ exp(−V (x)), x ∈ Rd .

The variable x∈ Rd can be interpreted as the configuration variable of a mechanical system and V as the corresponding
potential function. The idea behind the Hybrid Monte Carlo method is to consider the Hamiltonian function

H(x,p) =
1
2

pT M−1p+V (x), (1)

which defines a canonical probability distribution in phase space R2d

∝ exp(−H(x,p)) = exp(−V (x))× exp(−1
2

pT M−1p),

whose marginal distribution for x is the target π(x), while the momenta follow a multivariate Gaussian density with
zero mean and covariance matrix M (M is a constant mass matrix, frequently the identity matrix).

It is well known that the canonical density ∝ exp(−H(x,p)) is preserved by the exact flow of the Hamiltonian
system and almost preserved when the Hamiltonian system is integrated using an appropriate numerical method. The
Hybrid Monte Carlo algorithm defines transitions xn to xn+1 as follows:

1. Draw a momentum pn from a Gaussian with zero mean and covariance matrix M (i.e. compute pn =M1/2Z where
Z denotes a vector of independent standard Gaussians).

2. Find an approximation (x∗,p∗) to the exact solution of the Hamiltonian system after T units of time, starting
from (xn,pn). For instance, this can be done by advancing K steps of length h (T = K ·h) with the Stormer-Verlet
method as follows: set (x0

n,p0
n) = (xn,pn) and for k = 0, . . . ,K−1 repeat

• pk+1/2
n = pk

n +
h

2
M−1f(xk

n),

• xk+1
n = xk

n +hpk+1/2
n ,

• pk+1
n = pk+1/2

n +
h

2
M−1f(xk+1

n ),

where f(x) =−∇V (x).
3. Set (x∗,p∗) = (xK

n ,pK
n ) and set xn+1 = x∗ (acceptance) with probability

a = min(1,exp [−(H(x∗,p∗)−H(xn,pn))]).
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4. If the proposal x∗ is rejected, set xn+1 = xn.

The transitions xn → xn+1 defined in this way generate a Markov chain reversible with respect to the target density.

A VARIABLE METRIC HYBRID MONTE CARLO METHOD

The standard Hybrid Monte Carlo method uses a constant mass matrix in the Hamilton equations. The idea now is to
consider variable mass matrices to improve, if possible, the efficiency of the sampling. In [3] the authors propose to
replace the Hamiltonian function H given in (1) by H+(x,p) = T (x,p)+V+(x), where

V+(x) =V (x)+
1
2

logdetM(x) and T (x,p) =
1
2

pT M(x)−1p,

which has invariant density ∝ exp(−H+(x,p)). The marginal density with respect to x is again the target π(x) and,
at each transition, the initial momenta must be chosen as pn = M(xn)

1/2Z where Z denotes a vector of independent
standard Gaussians. The resulting Hamiltonian system is no longer separable, the Stormer-Verlet scheme can not be
used for its numerical integration and, in general, implicit schemes are required to define transitions xn → xn+1. As
a consequence, the computational cost per step of the new method is much higher than the computational cost of the
standard Hybrid Monte Carlo. In order to reduce it, after introducing velocities v = M(x)−1p, the same authors [4]
propose the following explicit algorithm to define transitions from xn to xn+1:

1. Draw a velocity vn from a Gaussian with zero mean and covariance matrix M(xn)
−1 (i.e. compute vn =

M(xn)
−1/2Z where Z denotes a vector of independent standard Gaussians).

2. Find an approximation (x∗,v∗) to the exact solution of the Hamiltonian system by means of K steps of length h
(T = K ·h) as follows: set (x0

n,v0
n) = (xn,vn) and for k = 0, . . . ,K−1 repeat

• vk+1/2
n = vk

n +
h

2
M(xk

n)
−1f(xk

n),

• xk+1
n = xk

n +hvk+1/2
n ,

• vk+1
n = vk+1/2

n +
h

2
M(xk+1

n )−1f(xk+1
n ),

where, as above, f(x) =−∇V (x).
3. Set (x∗,v∗) = (xK

n ,vK
n ) and set xn+1 = x∗ with probability

a = min(1,exp [−(H+(x∗,v∗)−H+(xn,vn))]) = min

(
1,

√
|M(x∗)|
|M(xn)| exp [−(H(x∗,v∗)−H(xn,vn))]

)
,

where |M(x)| denotes the determinant of matrix M(x) and H(x,v) =V (x)+
1
2

vT M(x)v.

4. If the proposal x∗ is rejected, set xn+1 = xn.

Although the numerical integrator is explicit, we observe that in the new method it is necessary to evaluate the mass
matrix M(x) (or its inverse) at each position where the gradient of the potential is required and it is also necessary to
compute the square root of M(x) and its determinant at each transition. This increases the overall computational cost
of the method when compared with the standard Hybrid Monte Carlo.

The Choice of the Variable Mass Matrix

Let us assume that the target density is π(x) ∝ exp(L (x)) with

L (x) =−1
2
(x−m)TC−1(x−m),

with C a given symmetric positive definite matrix. If xn is the current position,

L (x) = L (xn)+(m−xn)
TC−1(x−xn)+

1
2
(x−xn)

TC−1(x−xn).
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FIGURE 1. Picture to illustrate the choice of the variable mass matrix

This means that m− xn is the gradient of L at xn with respect to the metric defined by C−1 and provides the best
direction from xn to reach the local maximum at m. (Notice that C−1(m−xn) is the gradient of L with respect to the
Euclidean metric.) Figure 1 shows a picture illustrating this facts.

Then it is natural to take M(x) = −HL , where HL denotes the Hessian matrix of L . To avoid situations where
this Hessian is not positive definite, we take

M(x) = χ(−HL (x)),

with χ an appropriate function satisfying χ(ξ )> 0 and χ(ξ )/ξ → 1 as ξ →+∞.
In the particular case of a radial potential V =V (r), with r = |x|, then

HV =
1
r2

[
V ′′(r)− 1

r
V ′(r)

]
xxT +

1
r

V ′(r)Id =V ′′(r)
xxT

r2︸︷︷︸
Px

+
1
r

V ′(r)
(

Id− xxT

r2

)
︸ ︷︷ ︸

P⊥

, (2)

where V ′ and V ′′ denote the first and second derivative of V with respect to r and Px and P⊥ denote the orthogonal
projections onto the radial direction and the orthogonal hyperplane, respectively. Hence, taking L =−V one gets

M(x)−1 =
1

χ(V ′′(r))
Px +

1
χ (V ′(r)/r)

P⊥, M(x)−1/2 =
1√

χ(V ′′(r))
Px +

1√
χ (V ′(r)/r)

P⊥,

where it can also be used that P⊥y = y−Pxy. Furthermore, the computation of products M(x)−1f(x) appearing in the
algorithm can be efficiently done as f(x) only has radial component and, therefore M(x)−1f(x) = f(x)/χ(V ′′(r)).

A Numerical Experiment

Let us consider the canonical density associated to the potential of the motion of a stiff spring in Rd

V (x) =
1
2

k(r− �)2, r = |x|, (3)

where k is the elastic constant and � is the length of the spring at equilibrium. The canonical density ∝ exp(−V (x)) is
essentially concentrated on a region of width 1/

√
k around the hypersphere |x|= �.

The force at point x is
f(x) = ∇x(−V (x)) =−k(r− �)

x
r
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and we define M(x) = χ(HV ) with χ(ξ ) =
√

k2
0 +ξ 2, being k0 = d

√
k, and HV as in (2) for the potential (3).

We have considered different values of the dimension d = 2,3,10, two different values of the elastic constant
k = 1000 and k = 100000 and different combinations (h,K) for the numerical integration of the Hamiltonian systems,
leading to the same global computational time. The most remarkable fact observed in the experiments is that when
increasing the value of the elastic constant k (by a factor of 100) the value of the step size h used in the Hybrid Monte
Carlo method must be reduced (approximately by a factor of 10) in order to get positive acceptance ratios. On the
contrary, when using the variable metric algorithm, the same step-size h can be used with both values of k producing
very similar acceptance ratios in both cases. On the other hand, for a given value T used to generate elements in the
Markov chain, decreasing the step size h implies that the number K of steps in the numerical integration must increase,
leading to a higher computational cost. Thus, for k = 1000, the performances of the standard Hybrid Monte Carlo
method and the simplified variable metric algorithm are very similar but for k = 100000 the last method, although
computationally more expensive per integration step, becomes more efficient when sampling from the potential (3).

ACKNOWLEDGMENTS

The authors have been supported by project MTM2010-18246-C03-01 from Ministerio de Ciencia e Innovación

REFERENCES

1. E. Cancès, F. Legoll, and G. Stoltz, ESAIM: Mathematical Modelling and Numerical Analysis 41, 351–389 (2007).
2. S. Duane, A.D. Kennedy, B.J. Pendleton, and D. Roweth, Phys. Lett. B 55, 2774–2777 (1987).
3. M. Girolami, and B. Calderhead, J. R. Statist. Soc. B 73, 1–37 (2011).
4. M. Girolami, private communication (Oct. 2012).

17 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

85.72.112.82 On: Fri, 29 Nov 2013 04:13:36


