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Definition

This entry, concerned with the practical task of in-
tegrating numerically Hamiltonian systems, follows
up the entry �Hamiltonian Systems and keeps the
notation and terminology used there.

Each one-step numerical integrator is specified by
a smooth map �H

tnC1;tn
that advances the numerical

solution from a time level tn to the next tnC1

.pnC1; qnC1/ D �H
tnC1;tn

.pn; qn/I (1)

the superscript H refers to the Hamiltonian function
H.p; qI t/ of the system being integrated. For instance
for the explicit Euler rule

.pnC1; qnC1/ D .pn; qn/C .tnC1 � tn/
�
f .pn; qnI tn/;

g.pn; qnI tn/
�I

here and later f and g denote the d -dimensional
real vectors with entries �@H=@qi , @H=@pi (d is the
number of degrees of freedom) so that .f; g/ is the
canonical vector field associated with H (in simpler
words: the right-hand side of Hamilton’s equations).
For the integrator to make sense, �H

tnC1;tn
has to approx-

imate the solution operator ˚H
tnC1;tn

that advances the
true solution from its value at tn to its value at tnC1:

�
p.tnC1/; q.tnC1/

� D ˚H
tnC1;tn

�
p.tn/; q.tn/

�
:

For a method of (consistency) order �, �H
tnC1;tn

differs

from ˚H
tnC1;tn

in terms of magnitude O�
.tnC1� tn/�C1�.

The solution map ˚H
tnC1;tn

is a canonical (symplec-
tic) transformation in phase space, an important fact
that substantially constrains the dynamics of the true
solution

�
p.t/; q.t/

�
. If we wish the approximation

�H to retain the “Hamiltonian” features of ˚H , we
should insist on �H also being a symplectic transfor-
mation. However, most standard numerical integrators
– including explicit Runge–Kutta methods, regardless

of their order � – replace ˚H by a nonsymplectic
mapping �H . This is illustrated in Fig. 1 that corre-
sponds to the Euler rule as applied to the harmonic
oscillator Pp D �q, Pq D p. The (constant) step size
is tnC1 � tn D 2�=12. We have taken as a family
of initial conditions the points of a circle centered at
p D 1, q D 0 and seen the evolution after 1, 2, . . . , 12
steps. Clearly the circle, which should move clockwise
without changing area, gains area as the integration
proceeds: The numerical �H is not symplectic. As
a result, the origin, a center in the true dynamics, is
turned by the discretization procedure into an unstable
spiral point, i.e., into something that cannot arise in
Hamiltonian dynamics. For the implicit Euler rule, the
corresponding integration loses area and gives rise to a
family of smaller and smaller circles that spiral toward
the origin. Again, such a stable focus is incompatible
with Hamiltonian dynamics.

This failure of well-known methods in mimicking
Hamiltonian dynamics motivated the consideration of
integrators that generate a symplectic mapping �H

when applied to a Hamiltonian problem. Such methods
are called symplectic or canonical. Since symplec-
tic transformations also preserve volume, symplectic
integrators applied to Hamiltonian problems are au-
tomatically volume preserving. On the other hand,
while many important symplectic integrators are time-
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Symplectic Methods, Fig. 1 The harmonic oscillator inte-
grated by the explicit Euler method
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reversible (symmetric), reversibility is neither suffi-
cient nor necessary for a method to be symplectic ([8],
Remark 6.5).

Even though early examples of symplectic integra-
tion may be traced back to the 1950s, the systematic
exploration of the subject started with the work of Feng
Kang (1920–1993) in the 1980s. An early short mono-
graph is [8] and later books are the comprehensive
[5] and the more applied [6]. Symplectic integration
was the first step in the larger endeavor of developing
structure-preserving integrators, i.e., of what is now
often called, following [7], geometric integration.

Limitations of space restrict this entry to one-step
methods and canonical Hamiltonian problems. For
noncanonical Hamiltonian systems and multistep inte-
grators the reader is referred to [5], Chaps. VII and XV.

Integrators Based on Generating
Functions

The earliest systematic approaches by Feng Kang and
others to the construction of symplectic integrators (see
[5], Sect. VI.5.4 and [8], Sect. 11.2) exploited the fol-
lowing well-known result of the canonical formalism:
The canonical transformation ˚H

tnC1;tn
possesses a gen-

erating function S2 that solves an initial value problem
for the associated Hamilton–Jacobi equation. It is then
possible, by Taylor expanding that equation, to obtain
an approximation eS2 to S2. The transformation�H

tnC1;tn

generated by eS2 will automatically be canonical and
therefore will define a symplectic integrator. If eS2
differs from S2 by terms O�

.tnC1 � tn/
�C1�, the inte-

grator will be of order �. Generally speaking, the high-
order methods obtained by following this procedure are
more difficult to implement than those derived by the
techniques discussed in the next two sections.

Runge–Kutta and Related Integrators

In 1988, Lasagni, Sanz-Serna, and Suris (see
[8], Chap. 6) discovered independently that some
well-known families of numerical methods contain
symplectic integrators.

Runge–Kutta Methods

Symplecticness Conditions
When the Runge–Kutta (RK) method with s stages
specified by the tableau

a11 � � � a1s
:::

: : :
:::

as1 � � � ass
b1 � � � bs

(2)

is applied to the integration of the Hamiltonian system
with Hamiltonian functionH , the relation (1) takes the
form

pnC1 D pn C hnC1
sX
iD1

bi f .Pi ;Qi I tn C cihnC1/;

qnC1 D qn C hnC1
sX
iD1

bi g.Pi ;Qi I tn C cihnC1/;

where ci D P
j aij are the abscissae, hnC1 D tnC1� tn

is the step size and Pi ,Qi , i D 1; : : : ; s are the internal
stage vectors defined through the system

Pi D pn C hnC1
sX

jD1
aij f .Pj ;Qj I tn C cj hnC1/;

(3)

Qi D qn C hnC1
sX

jD1
aij g.Pj ;Qj I tn C cj hnC1/:

(4)

Lasagni, Sanz-Serna, and Suris proved that if the
coefficients of the method in (2) satisfy

biaij C bj aj i � bibj D 0; i; j D 1; : : : ; s; (5)

then the method is symplectic. Conversely ([8],
Sect. 6.5), the relations (5) are essentially necessary
for the method to be symplectic. Furthermore for
symplectic RK methods the transformation (1) is in
fact exact symplectic ([8], Remark 11.1).

Order Conditions
Due to symmetry considerations, the relations (5) im-
pose s.s C 1/=2 independent equations on the s2 C s
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elements of the RK tableau (2), so that there is no
shortage of symplectic RK methods. The available free
parameters may be used to increase the accuracy of the
method. It is well known that the requirement that an
RK formula has a target order leads to a set of nonlinear
relations (order conditions) between the elements of
the corresponding tableau (2). For order � � there
is an order condition associated with each rooted tree
with � � vertices and, if the aij and bi are free
parameters, the order conditions are mutually inde-
pendent. For symplectic methods however the tableau
coefficients are constrained by (5), and Sanz-Serna and
Abia proved in 1991 that then there are redundancies
between the order conditions ([8], Sect. 7.2). In fact
to ensure order � � when (5) holds it is necessary
and sufficient to impose an order condition for each
so-called nonsuperfluous (nonrooted) tree with � �

vertices.

Examples of Symplectic Runge–Kutta Methods
Setting j D i in (5) shows that explicit RK methods
(with aij D 0 for i � j ) cannot be symplectic.

Sanz-Serna noted in 1988 ([8], Sect. 8.1) that the
Gauss method with s stages, s D 1; 2; : : : , (i.e., the
unique method with s stages that attains the maximal
order 2s) is symplectic. When s D 1 the method is
the familiar implicit midpoint rule. Since for all Gauss
methods the matrix .aij / is full, the computation of
the stage vectors Pi and Qi require, at each step,
the solution of the system (3) and (4) that comprises
s � 2d scalar equations. In non-stiff situations this
system is readily solved by functional iteration, see
[8] Sects. 5.4 and 5.5 and [5] Sect. VIII.6, and then the
Gauss methods combine the advantages of symplectic-
ness, easy implementation, and high order with that of
being applicable to all canonical Hamiltonian systems.

If the system being solved is stiff (e.g., it arises
through discretization of the spatial variables of a
Hamiltonian partial differential equation), Newton it-
eration has to be used to solve the stage equations (3)
and (4), and for high-order Gauss methods the cost
of the linear algebra may be prohibitive. It is then
of interest to consider the possibility of diagonally
implicit symplectic RK methods, i.e., methods where
aij D 0 for i < j and therefore (3) and (4) demand
the successive solution of s systems of dimension
2d , rather than that of a single .s � 2d/–dimensional
system. It turns out ([8], Sect. 8.2) that such meth-
ods are necessarily composition methods (see below)

obtained by concatenating implicit midpoint sub-steps
of lengths b1hnC1, . . . , bshnC1. The determination of
the free parameters bi is a task best accomplished by
means of the techniques used to analyze composition
methods.

The B-series Approach
In 1994, Calvo and Sanz-Serna ([5], Sect. VI.7.2) pro-
vided an indirect technique for the derivation of the
symplecticness conditions (5). The first step is to iden-
tify conditions for the symplecticness of the associated
B-series (i.e., the series that expands the transformation
(1)) in powers of the step size. Then the conditions
(on the B-series) obtained in this way are shown to be
equivalent to (5). This kind of approach has proved to
be very powerful in the theory of geometric integration,
where extensive use is made of formal power series.

Partitioned Runge–Kutta Methods
Partitioned Runge–Kutta (PRK) methods differ from
standard RK integrators in that they use two tableaux of
coefficients of the form (2): one to advance p and the
other to advance q. Most developments of the theory
of symplectic RK methods are easily adapted to cover
the partitioned situation, see e.g., [8], Sects. 6.3, 7.3,
and 8.4.

The main reason ([8], Sect. 8.4) to consider the
class of PRK methods is that it contains integrators
that are both explicit and symplectic when applied
to separable Hamiltonian systems with H.p; qI t/ D
T .p/CV.qI t/, a format that often appears in the appli-
cations. It turns out ([8], Remark 8.1, [5], Sect. VI.4.1,
Theorem 4.7) that such explicit, symplectic PRK meth-
ods may always be viewed as splitting methods (see
below). Moreover it is advantageous to perform their
analysis by interpreting them as splitting algorithms.

Runge–Kutta–Nyström Methods
In the special but important case where the (separable)
Hamiltonian is of the form H D .1=2/pTM�1p C
V.qI t/ (M a positive-definite symmetric matrix) the
canonical equations

d

dt
p D �rV.qI t/; d

dt
q D M�1p (6)

lead to
d2

dt2
q D �M�1rV.qI t/;
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a second-order system whose right-hand side is in-
dependent of .d=dt/q. Runge–Kutta–Nyström (RKN)
methods may then be applied to the second-order form
and are likely to improve on RK integrations of the
original first-order system (6).

There are explicit, symplectic RKN integrators
([8], Sect. 8.5). However their application (see [8],
Remark 8.5) is always equivalent to the application
of an explicit, symplectic PRK method to the first-
order equations (6) and therefore – in view of a
consideration made above – to the application of a
splitting algorithm.

Integrators Based on Splitting and
Composition

The related ideas of splitting and composition are
extremely fruitful in deriving practical symplectic in-
tegrators in many fields of application. The corre-
sponding methods are typically ad hoc for the problem
at hand and do not enjoy the universal off-the-shelf
applicability of, say, Gaussian RK methods; however,
when applicable, they may be highly efficient. In order
to simplify the exposition, we assume hereafter that the
Hamiltonian H is time-independent H D H.p; q/;
we write �HhnC1

and  HhnC1
rather than ˚H

tnC1;tn
and

�H
tnC1;tn

. Furthermore, we shall denote the time step
by h omitting the possible dependence on the step
number n.

Splitting

Simplest Splitting
The easiest possibility of splitting occurs when the
Hamiltonian H may be written as H1 C H2 and the
Hamiltonian systems associated with H1 and H2 may
be explicitly integrated. If the corresponding flows
are denoted by �H1t and �H2t , the recipe (Lie–Trotter
splitting, [8], Sect. 12.4.2, [5], Sect. II.5)

 Hh D �
H2
h ı �H1h (7)

defines the map (1) of a first-order integrator that
is symplectic (the mappings being composed in the
right-hand side are Hamiltonian flows and therefore
symplectic). Splittings of H in more than two pieces
are feasible but will not be examined here.

A particular case of (7) of great practical
significance is provided by the separable Hamiltonian
H.p; q/ D T .p/ C V.q/ with H1 D T , H2 D V ;
the flows associated with H1 and H2 are respectively
given by

�
p; q

� 7!�
p; qC trT .p/�; �p; q� 7!�

p� trV.q/; q�:
Thus, in this particular case the scheme (7) reads

pnC1 D pn � hrV.qnC1/; qnC1 D qn C hrT .pn/;
(8)

and it is sometimes called the symplectic Euler rule
(it is obviously possible to interchange the roles of
p and q). Alternatively, (8) may be considered as a
one-stage, explicit, symplectic PRK integrator as in [8],
Sect. 8.4.3.

As a second example of splitting, one may consider
(nonseparable) formatsH D H1.p; q/CV �.q/, where
the Hamiltonian system associated with H1 can be
integrated in closed form. For instance, H1 may cor-
respond to a set of uncoupled harmonic oscillators and
V �.q/ represent the potential energy of the interactions
between oscillators. Or H1 may correspond to the
Keplerian motion of a point mass attracted to a fixed
gravitational center and V � be a potential describing
some sort of perturbation.

Strang Splitting
With the notation in (7), the symmetric Strang formula
([8], Sect. 12.4.3, [5], Sect. II.5)

N Hh D �
H2
h=2 ı �H1h ı �H2h=2 (9)

defines a time-reversible, second-order symplectic in-
tegrator N Hh that improves on the first order (7).

In the separable Hamiltonian case H D T .p/ C
V.q/, (9) leads to

pnC1=2 D pn � h

2
rV.qn/;

qnC1 D qn C hrT .pnC1=2/;

pnC1 D pnC1=2 � h

2
rV.qnC1/:

This is the Störmer–Leapfrog–Verlet method that plays
a key role in molecular dynamics [6]. It is also possible
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to regard this integrator as an explicit, symplectic PRK
with two stages ([8], Sect. 8.4.3).

More Sophisticated Formulae
A further generalization of (7) is

�
H2
ˇsh

ı �H1˛sh ı �H2ˇs�1h ı � � � ı �H2ˇ1h ı �H1˛1h (10)

where the coefficients˛i andˇi ,
P

i ˛i D 1,
P

i ˇi D 1,
are chosen so as to boost the order � of the method.
A systematic treatment based on trees of the required
order conditions was given by Murua and Sanz-Serna
in 1999 ([5], Sect. III.3). There has been much recent
activity in the development of accurate splitting coef-
ficients ˛i , ˇi and the reader is referred to the entry
� Splitting Methods in this encyclopedia.

In the particular case where the splitting is given by
H D T .p/C V.q/, the family (10) provides the most
general explicit, symplectic PRK integrator.

Splitting Combined with Approximations
In (7), (9), or (10) use is made of the exact solution
flows �H1t and �H2t . Even if one or both of these flows
are not available, it is still possible to employ the
idea of splitting to construct symplectic integrators. A
simple example will be presented next, but many others
will come easily to mind.

Assume that we wish to use a Strang-like method
but �H1t is not available. We may then advance the
numerical solution via

�
H2
h=2 ı b H1

h ı �H2h=2; (11)

where b H1
h denotes a consistent method for the integra-

tion of the Hamiltonian problem associated with H1.
If b H1

h is time-reversible, the composition (11) is also
time-reversible and hence of order � D 2 (at least).
And if b H1

h is symplectic, (11) will define a symplectic
method.

Composition
A step of a composition method ([5], Sect. II.4) con-
sists of a concatenation of a number of sub-steps
performed with one or several simpler methods. Often
the aim is to create a high-order method out of low-
order integrators; the composite method automatically
inherits the conservation properties shared by the meth-
ods being composed. The idea is of particular appeal

within the field of geometric integration, where it is
frequently not difficult to write down first- or second-
order integrators with good conservation properties.

A useful example, due to Suzuki, Yoshida, and
others (see [8], Sect. 13.1), is as follows. Let  Hh be
a time-reversible integrator that we shall call the basic
method and define the composition method b H

h by

b H
h D  H˛h ı  H.1�2˛/h ı  H˛hI

if the basic method is symplectic, then b H
h will obvi-

ously be a symplectic method. It may be proved that,
if ˛ D .1=3/.2 C 21=3 C 2�1=3/, then b H

h will have
order � D 4. By using this idea one may perform
symplectic, fourth-order accurate integrations while
really implementing a simpler second-order integra-
tor. The approach is particularly attractive when the
direct application of a fourth-order method (such as
the two-stage Gauss method) has been ruled out on
implementation grounds, but a suitable basic method
(for instance the implicit midpoint rule or a scheme
derived by using Strang splitting) is available.

If the (time-reversible) basic method is of order 2�
and ˛ D �

2�21=.2�C1/��1
then b H

h will have order � D
2�C2; the recursive application of this idea shows that
it is possible to reach arbitrarily high orders starting
from a method of order 2.

For further possibilities, see the entry �Composition
Methods and [8], Sect. 13.1, [5], Sects. II.4 and III.3.

The Modified Hamiltonian

The properties of symplectic integrators outlined in the
next section depend on the crucial fact that, when a
symplectic integrator is used, a numerical solution of
the Hamiltonian system with Hamiltonian H may be
viewed as an (almost) exact solution of a Hamiltonian
system whose Hamiltonian function eH (the so-called
modified Hamiltonian) is a perturbation of H .

An example. Consider the application of the sym-
plectic Euler rule (8) to a one-degree-of-freedom sys-
tem with separable Hamiltonian H D T .p/ C V.q/.
In order to describe the behavior of the points .pn; qn/
computed by the algorithm, we could just say that they
approximately behave like the solutions .p.tn/; q.tn//
of the Hamiltonian system S being integrated. This
would not be a very precise description because the
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true flow �Hh and its numerical approximation  Hh
differ in O.h2/ terms. Can we find another differential
system S2 (called a modified system) so that (8) is
consistent of the second order with S2? The points
.pn; qn/ would then be closer to the solutions of
S2 than to the solutions of the system S we want
to integrate. Straightforward Taylor expansions ([8],
Sect. 10.1) lead to the following expression for S2
(recall that f D �@H=@q, g D @H=@p)

d

dt
p D f .q/C h

2
g.p/f 0.q/;

d

dt
q D g.p/

�h
2
g0.p/f .q/; (12)

where we recognize the Hamiltonian system with (h-
dependent!) Hamiltonian

eHh
2 D T .p/C V.q/C h

2
T 0.p/V 0.q/ D H C O.h/:

(13)

Figure 2 corresponds to the pendulum equations
g.p/ D p, f .q/ D � sin q with initial condition
p.0/ D 0, q.0/ D 2. The stars plot the numerical
solution with h D 0:5. The dotted line H D constant
provides the true pendulum solution. The dash–dot lineeHh
2 D constant gives the solution of the modified

system (12). The agreement of the computed points
with the modified trajectory is very good.

The origin is a center of the modified system (recall
that a small Hamiltonian perturbation of a Hamiltonian
center is still a center); this matches the fact that, in
the plot, the computed solution does not spiral in or
out. On the other hand, the analogous modified system
for the (nonsymplectic) integration in 1 is found not be
a Hamiltonian system, but rather a system with neg-
ative dissipation: This agrees with the spiral behavior
observed there.

By adding extra O.h2/ terms to the right-hand sides
of (12), it is possible to construct a (more accurate)
modified system S3 so that (8) is consistent of the third
order with S3; thus, S3 would provide an even better
description of the numerical solution. The procedure
may be iterated to get modified systems S4, S5, . . . and
all of them turn out to be Hamiltonian.
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General case. Given an arbitrary Hamiltonian sys-
tem with a smooth Hamiltonian H , a consistent sym-
plectic integrator  Hh and an arbitrary integer � > 0,
it is possible ([8], Sect. 10.1) to construct a modified
Hamiltonian system S� with Hamiltonian function eHh

�,

such that  Hh differs from the flow �
eHh
�

h in O.h�C1/
terms. In fact, eHh

� may be chosen as a polynomial of
degree < � in h; the term independent of h coincides
withH (cf. (13)) and for a method of order � the terms
in h, . . . , h��1 vanish.

The polynomials in h eHh
�, � D 2; 3; : : : are the

partial sums of a series in powers of h. Unfortunately
this series does not in general converge for fixed h,

so that, in particular, the modified flows �
eHh
�

h cannot
converge to  Hh as � " 1. Therefore, in general, it

is impossible to find a Hamiltonian eHh such that �eHh

h

coincides exactly with the integrator  Hh . Neishtadt
([8], Sect. 10.1) proved that by retaining for each h >
0 a suitable number N D N.h/ of terms of the
series it is possible to obtain a Hamiltonian eHh such
that �eHh

h differs from  Hh in an exponentially small
quantity.

Here is the conclusion for the practitioner: For
a symplectic integrator applied to an autonomous
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Hamiltonian system, modified autonomous Hamil-
tonian problems exist so that the computed points lie
“very approximately” on the exact trajectories of the
modified problems. This makes possible a backward
error interpretation of the numerical results: The
computed solutions are solving “very approximately”
a nearby Hamiltonian problem. In a modeling situation
where the exact form of the Hamiltonian H may be in
doubt, or some coefficients in H may be the result of
experimental measurements, the fact that integrating
the model numerically introduces perturbations to H
comparable to the uncertainty in H inherent in the
model is the most one can hope for.

On the other hand, when a nonsymplectic formula
is used the modified systems are not Hamiltonian: The
process of numerical integration perturbs the model in
such a way as to take it out of the Hamiltonian class.

Variable steps. An important point to be noted is
as follows: The backward error interpretation only
holds if the numerical solution after n steps is com-
puted by iterating n times one and the same symplec-
tic map. If, alternatively, one composes n symplectic
maps (one from t0 to t1, a different one from t1
to t2, etc.) the backward error interpretation is lost,
because the modified system changes at each step ([8],
Sect. 10.1.3).

As a consequence, most favorable properties of
symplectic integrators (and of other geometric inte-
grators) are lost when they are naively implemented
with variable step sizes. For a complete discussion of
this difficulty and of ways to circumvent it, see [5],
Sects. VIII 1–4.

Finding explicitly the modified Hamiltonians. The
existence of a modified Hamiltonian system is a general
result that derives directly from the symplecticness of
the transformation  Hh ([8], Sect. 10.1) and does not
require any hypothesis on the particular nature of such
a transformation. However, much valuable information
may be derived from the explicit construction of the
modified Hamiltonians. For RK and related methods,
a way to compute systematically the eHh

�’s was first
described by Hairer in 1994 and then by Calvo, Mu-
rua, and Sanz-Serna ([5], Sect. IX.9). For splitting and
composition integrators, the eHh

�’s may be obtained by
use of the Baker–Campbell–Hausdorff formula ([8],
Sect. 12.3, [5], Sect. III.4) that provides a means to
express as a single flow the composition of two flows.

This kind of research relies very much on concepts and
techniques from the theory of Lie algebras.

Properties of Symplectic Integrators

We conclude by presenting an incomplete list of favor-
able properties of symplectic integrators. Note that the
advantage of symplecticness become more prominent
as the integration interval becomes longer.

Conservation of energy. For autonomous Hamilto-
nians, the value ofH is of course a conserved quantity
and the invariance of H usually expresses conser-
vation of physical energy. Ge and Marsden proved
in 1988 ([8], Sect. 10.3.2) that the requirements of
symplecticness and exact conservation of H cannot
be met simultaneously by a bona fide numerical inte-
grator. Nevertheless, symplectic integrators have very
good energy behavior ([5], Sect. IX.8): Under very
general hypotheses, for a symplectic integrator of or-
der �: H.pn; qn/ D H.p0; q0/ C O.h�/, where the
constant implied in the O notation is independent
of n over exponentially long time intervals nh �
exp

�
h0=.2h/

�
.

Linear error growth in integrable systems. For a
Hamiltonian problem that is integrable in the sense
of the Liouville–Arnold theorem, it may be proved
([5], Sect. X.3) that, in (long) time intervals of length
proportional to h�� , the errors in the action variables
are of magnitude O.h�/ and remain bounded, while
the errors in angle variables are O.h�/ and exhibit a
growth that is only linear in t . By implication the error
growth in the components ofp and q will be O.h�/ and
grow, at most, linearly. Conventional integrators, in-
cluding explicit Runge–Kutta methods, typically show
quadratic error growth in this kind of situation and
therefore cannot be competitive in a sufficiently long
integration.

KAM theory. When the system is closed to inte-
grable, the KAM theory ([5], Chap. X) ensures, among
other things, the existence of a number of invariant tori
that contribute to the stability of the dynamics (see [8],
Sect. 10.4 for an example). On each invariant torus the
motion is quasiperiodic. Symplectic integrators ([5],
Chap. X, Theorem 6.2) possess invariant tori O.h�/
close to those of the system being integrated and
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furthermore the dynamics on each invariant torus is
conjugate to its exact counterpart.

Linear error growth in other settings. Integrable
systems are not the only instance where symplectic
integrators lead to linear error growth. Other cases
include, under suitable hypotheses, periodic orbits,
solitons, relative equilibria, etc., see, among others,
[1–4].
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Introduction

Systems biology may be defined as the study of how
physiology emerges from molecular interactions [11].
Physiology tells us about function, whether at the
organismal, tissue, organ or cellular level; molecular
interactions tell us about mechanism. How do we relate
mechanism to function? This has always been one of
the central problems of biology and medicine but it
attains a particular significance in systems biology be-
cause the molecular realm is the base of the biological
hierarchy. Once the molecules have been identified,
there is nowhere left to go but up.

This is an enormous undertaking, encompassing,
among other things, the development of multicellular
organisms from their unicellular precursors, the hier-
archical scales from molecules to cells, tissues, and
organs, and the nature of malfunction, disease, and re-
pair. Underlying all of this is evolution, without which
biology can hardly be interpreted. Organisms are not
designed to perform their functions, they have evolved
to do so—variation, transfer, drift, and selection have
tinkered with them over 3:5 � 109 years—and this has
had profound implications for how their functions have
been implemented at the molecular level [12].

The mechanistic viewpoint in biology has nearly
always required a strongly quantitative perspective and
therefore also a reliance on quantitative models. If this
trend seems unfamiliar to those who have been reared
on molecular biology, it is only because our histori-
cal horizons have shrunk. The quantitative approach
would have seemed obvious to physiologists, geneti-
cists, and biochemists of an earlier generation. More-
over, quantitative methods wax and wane within an
individual discipline as new experimental techniques
emerge and the focus shifts between the descriptive
and the functional. The great Santiago Ramón y Cajal,
to whom we owe the conception of the central ner-
vous system as a network of neurons, classified “theo-
rists” with “contemplatives, bibliophiles and polyglots,


