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Synonyms

Canonical systems

Definition

Let I be an open interval of the real line R of the vari-
able t (time) and ˝ a domain of the Euclidean space
R

d � R
d of the variables .p; q/, p D .p1; : : : ; pd /,

q D .q1; : : : ; qd /. If H.p; qI t/ is a real smooth func-
tion defined in ˝ � I , the canonical or Hamiltonian
system associated with H is the system of 2d scalar
ordinary differential equations

d

dt
pi D �@H

@qi

.p; qI t/;

d

dt
qi D C@H

@pi

.p; qI t/; i D 1; : : : ; d: (1)

The function H is called the Hamiltonian, d is the
number of degrees of freedom, and ˝ the phase space.
Systems of the form (1) (which may be generalized
in several ways, see below) are ubiquitous in the
applications of mathematics; they appear whenever
dissipation/friction is absent or negligible.

It is sometimes useful to rewrite (1) in the compact
form

d

dt
y D J �1rH.yI t/; (2)

where y D .p; q/, rH D .@H=@p1; : : : ; @H=@pd I
@H=@q1; : : : ; @H=@qd / and

J D
�

0d�d Id�d

�Id�d 0d�d

�
: (3)

Origin of Hamiltonian Systems

Newton’s Second Law in Hamiltonian Form
Consider the motion of a system of N point masses in
three-dimensional space (cases of interest range from
stars or planets in celestial mechanics to atoms in
molecular dynamics). If rj denotes the radius vector
joining the origin to the j -th point, Newton’s equations
of motion read

mj Rrj D Fj ; j D 1; : : : ; N: (4)

In the conservative case, where the force Fj is the
gradient with respect to rj of a scalar potential V , that
is,

Fj D �rrj V .r1; : : : ; rN I t/; j D 1; : : : ; N;

(5)
the system (4) may be rewritten in the Hamiltonian
form (1) with d D 3N by choosing, for j D
1; : : : ; N , .p3j �2; p3j �1; p3j / as the cartesian compo-
nents of the momentum pj D mj Prj of the j -th mass,
.q3j �2; q3j �1; q3j / as the cartesian components of rj ,
and setting
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H D T C V; T D 1

2

NX
j D1

1

mj

p2
j D 1

2
pT M �1p

(6)

(here M is the 3N � 3N diagonal mass matrix
diag.m1; m1; m1I : : : I mN ; mN ; mN /). The Hamil-
tonian H coincides with the total, kinetic + potential,
mechanical energy.

Lagrangian Mechanics in Hamiltonian Form
Conservative systems S more complicated than the
one just described (e.g., systems including rigid bodies
and/or constraints) are often treated within the La-
grangian formalism [1,3], where the configuration of S
is (locally) described by d (independent) Lagrangian
coordinates qi . For instance, the motion of a point
on the surface of the Earth – with two degrees of
freedom – may be described by the corresponding
longitude and latitude, rather than by using the three
(constrained) cartesian coordinates. The movements
are then governed by the coupled second-order differ-
ential equations

d

dt

@L
@ Pqi

� @L
@qi

D 0; i D 1; : : : ; d; (7)

where L D L.q; PqI t/ is the Lagrangian function of
S. For each i D 1; : : : ; d , pi D @L=@ Pqi represents
the generalized momentum associated with the coor-
dinate qi . Under not very demanding hypotheses, the
transformation . Pq; q/ 7! .p; q/ may be inverted (i.e.,
it is possible to retrieve the value of the velocities Pq
from the knowledge of the values of the momenta p

and coordinates q) and then (7) may be rewritten in the
form (1) with H.p; qI t/ D pT Pq �L.q; PqI t/, where, in
the right-hand side, it is understood that the velocities
have been expressed as functions of p and q (this is
an instance of a Legendre’s transformation, see [1],
Sect. 14). The function H often corresponds to the total
mechanical energy in the system S.

Calculus of Variations
According to Hamilton’s variational principle of least
action (see, e.g., Sect. 13 in [1] or Sects. 2-1–2-3 in
[3]), the motions of the mechanical system S, we have
just described, are extremals of the functional (action)

Z t1

t0

L.q.t/; Pq.t/I t/ dt I (8)

in fact (7) are just the Euler-Lagrange equations associ-
ated with (8). The evolutions of many (not necessarily
mechanical) systems are governed by variational prin-
ciples for functionals of the form (8). The correspond-
ing Euler-Lagrange equations (7) may be recast in the
first order format (1) by following the procedure we
have just described ([2], Vol. I, Sects. IV and 9). In fact
Hamilton first came across differential equations of the
form (1) when studying Fermat’s variational principle
in geometric optics.

The Hamiltonian Formalism in Quantum and
Statistical Mechanics
In the context of classical mechanics the transition
from the Lagrangian format (7) to the Hamiltonian for-
mat (1) is mainly a matter of mathematical convenience
as we shall discuss below. On the contrary, in other
areas, including for example, quantum and statistical
mechanics, the elements of the Hamiltonian formalism
are essential parts of the physics of the situation.
For instance, the statistical canonical ensemble asso-
ciated with (4)–(5) possesses a density proportional
to exp.�ˇH/, where H is given by (6) and ˇ is a
constant.

First Integrals

Assume that, for some index i0, the Hamiltonian H is
independent of the variable qi0 . It is then clear from
(1) that, for any solution .p.t/; q.t// of (1) the value
of pi0 remains constant; in other words the function
pi0 is a first integral or conserved quantity of (1).
In mechanics, this is expressed by saying that the
momentum pi0 conjugate to the cyclic coordinate qi0 is
a constant of motion; for instance, in the planar motion
of a point mass in a central field, the polar angle is
a cyclic coordinate and this implies the conservation
of angular momentum (second Kepler’s law). Similarly
qi0 is a first integral whenever H is independent of pi0 .

In the autonomous case where the Hamiltonian does
not depend explicitly on t , that is, H D H.p; q/

a trivial computation shows that for solutions of (1)
.d=dt/H.p.t/; q.t// D 0, so that H is a constant
of motion. In applications this often expresses the
principle of conservation of energy.



Hamiltonian Systems 619

H

Canonical Transformations

The study of Hamiltonian systems depends in an essen-
tial way on that of canonical or symplectic transforma-
tions.

Definition
With the compact notation in (2), a differentiable trans-
formation y� D .p�; q�/ D �.y/, � W ˝ ! R

d �
R

d is called canonical (or symplectic) if its Jacobian
matrix � 0.y/, with .i; j / entry @y�

i =@yj , satisfies, for
each y D .p; q/ in ˝ ,

� 0.y/T J � 0.y/ D J: (9)

The composition of canonical transformations is
canonical; the inverse of a canonical transformation is
also canonical.

By equating the entries of the matrices in (9) and
taking into account the skew-symmetry, one sees that
(9) amounts to d.2d � 1/ independent scalar equations
for the derivatives @y�

i =@yj . For instance, for d D 1,
(9) is equivalent to the single relation

@p�

@p

@q�

@q
� @p�

@q

@q�

@p
� 1: (10)

Simple examples of canonical transformations with
d D 1 are the rotation

p� D cos.�/p�sin.�/q; q� D sin.�/pCcos.�/q

(11)

and the hyperbolic rotation p� D exp.�/p, q� D
exp.��/q (� is an arbitrary constant).

Geometric Interpretation
Consider first the case d D 1 where, in view of (10),
canonicity means that the Jacobian determinant � D
det

�
@.p�; q�/=@.p; q/

�
takes the constant value 1. The

fact j � j D 1 entails that for any bounded domain D �
˝ , the areas of D and �.D/ coincide. Furthermore
� > 0 means that � is orientation preserving. Thus,
the triangle with vertices A D .0; 0/, B D .1; 0/,
C D .0; 1/ cannot be symplectically mapped onto
the triangle with vertices A� D .0; 0/, B� D .1; 0/,
C � D .0; �1/ in spite of both having the same area,
because the boundary path A� ! B� ! C � ! A�
is oriented clockwise and A ! B ! C ! A has the

opposite orientation. One may say that, when d D 1,
a transformation is canonical if and only if it preserves
oriented area.

For d > 1 the situation is similar, if slightly more
complicated to describe. It is necessary to consider
two-dimensional bounded surfaces D � ˝ and orient
them by choosing one of the two orientations of the
boundary curve @D. The surface D is projected onto
each of the d two-dimensional planes of the variables
.pi ; qi / to obtain d two-dimensional domains ˘i .D/

with oriented boundaries; then we compute the number
S.D/ D P

i ˙Area.˘i .D//, where, when summing,
a term is taken with the C (resp. with the �) sign if the
orientation of the boundary of ˘i .D/ coincides with
(resp. is opposite to) the standard orientation of the
.pi ; qi / plane. Then a transformation � is canonical
if and only if S.D/ D S.�.D// for each D.

In Euclidean geometry, a planar transformation that
preserves distances automatically preserves areas. Sim-
ilarly, it may be shown that the preservation of the
sum S.D/ of oriented areas implies the preservation of
similar sums of oriented 4–, 6–, . . . , 2d -dimensional
measures (the so-called Poincaré integral invariants).
In particular a symplectic transformation preserves the
orientation of the 2d -dimensional phase space (i.e., its
Jacobian determinant � is > 0) and also preserves
volume: for any bounded domain V � ˝ , the vol-
umes (ordinary Lebesgue measures) of V and �.V /

coincide.
The preceding considerations (and for that matter

most results pertaining to the Hamiltonian formalism)
are best expressed by using the language of differential
forms. Lack of space makes it impossible to use that
alternative language here and the reader is referred to
[1], Chap. 8 (see also [6], Sect. 2.4).

Changing Variables in a Hamiltonian System
Assume that in (1) we perform an invertible change of
variables y D �.z/ where � is canonical. A straightfor-
ward application of the chain rule shows that the new
system, that is, .d=dt/z D .�0.z//�1J �1ryH.�.z/I t/,
coincides with the Hamiltonian system .d=dt/z D
J �1rzK.zI t/ whose Hamiltonian function K.zI t/ D
H.�.z/I t/ is obtained by expressing the old H in
terms of the new variables. In fact, if one looks for
a condition on y D �.z/ that ensures that in the z-
variables (1) becomes the Hamiltonian system with
Hamiltonian H.�.z/I t/, one easily discovers the def-
inition of canonicity in (9). The same exercise shows
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that the matrix J in (9) and that appearing in (2) have
to be inverses of one another.

This most important result has of course its counter-
part in Lagrangian mechanics or, more generally, in the
calculus of variations (see [1], Sect. 12D or [2], Vol. I,
Sects. IV and 8): to change variables in the Euler-
Lagrange equations for (8) it is enough to first change
variables in L and then form the Euler-Lagrange equa-
tions associated with the new Lagrangian function.
However, in the Lagrangian case, only the change of
the d coordinates q D �.w/ is at our disposal; the
choice of � determines the corresponding formulae
for the velocities Pq D � 0.w/ Pw. In the Hamiltonian
case, the change y D �.z/ couples the 2d -dimensional
y D .p; q/ with the 2d -dimensional z and the class
of possible transformations is, therefore, much wider.
Jacobi’s method (see below) takes advantage of these
considerations.

Exact Symplectic Transformations
A transformation .p�; q�/ D �.p; q/, .p; q/ 2 ˝ is
said to be exact symplectic if

pdq � p�dq�

D
dX

iD1

0
@pi dqi � p�

i

dX
j D1

�
@q�

i

@pj

dpj C @q�
i

@qj

dqj

�1
A

(12)

is the differential of a real-valued function S.p; q/

defined in ˝ .
For (12) to coincide with dS it is necessary but not

sufficient to impose the familiar d.2d � 1/ relations
arising from the equality of mixed second order deriva-
tives of S . It is trivial to check that those relations
coincide with the d.2d � 1/ relations implicit in
(9) and therefore exact symplectic transformations are
always symplectic. In a simply connected domain ˝ ,
symplectic transformations are also exact symplectic;
in a general ˝ , a symplectic transformation is not
necessarily exact symplectic and, when it is not, the
function S only exists locally.

Generating Functions: Hamilton-Jacobi
Theory

Generating functions provide a convenient way of
expressing canonical transformations.

Generating Function S1

Given a canonical transformation .p�; q�/ D �.p; q/,
let us define locally a function S such that dS is
given by (12) and assume that @.q�; q/=@.p; q/ is
non-singular. Then, in lieu of .p; q/, we may take
.q�; q/ as independent variables and express S in
terms of them to obtain a new function S1.q

�; q/ D
S.p.q�; q/; q/, called the generating function (of the
first kind) of the transformation. From (12)

@S1

@qi

D pi ;
@S1

@q�
i

D �p�
i ; i D 1; : : : ; d I (13)

the relations in the first group of (13) provide d coupled
equations to find the q�

i as functions of .p; q/ and those
in the second group then allow the explicit computation
of p�. For (11) the preceding construction yields S1 D
�.cot.�/=2/.q2 � 2 sec.�/qq� C q�2/, (provided that
sin.�/ ¤ 0), an expression that, via (13) leads back
to (11).

Conversely, if S1.q
�; q/ is any given function and

the relations (13) define uniquely .p�; q�/ as functions
of .p; q/, then .p; q/ 7! .p�; q�/ is a canonical
transformation ([1], Sect. 47A).

Other Generating Functions
The construction of S1 is only possible under the
assumption that .q�; q/ may be taken as independent
variables. This assumption does not hold in many
important cases, including that where � is the identity
transformation (with q� D q). It is therefore useful to
introduce a new kind of generating function as follows:
If (12) is the differential of S.p; q/ (perhaps only
locally), then d.p�T q� C S/ D q�T dp� C pT dq. If
@.p�; q/=@.p; q/ is non-singular, .p�; q/ may play the
role of independent variables and if we set S2.p

�; q/ D
p�T q�.p�; q/ C S.p.p�; q/; q/ it follows that

@S2

@qi

D pi ;
@S2

@p�
i

D q�
i ; i D 1; : : : ; d I (14)

here the first equations determine the p�
i as func-

tions of .p; q/ and the second yield the q�
i explicitly.

The function S2 is called the generating function of the
2nd kind of � . The identity transformation is generated
by S2 D p�T q. For (11) with cos.�/ ¤ 0 (which
ensures that .p�; q/ are independent) we find:

S2 D tan.�/

2

�
q2 C 2 csc.�/qp� C p�2

�
: (15)
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Conversely if S2.p
�; q/ is any given function and

the relations (14) define uniquely .p�; q�/ as functions
of .p; q/, then .p; q/ 7! .p�; q�/ is a canonical
transformation ([1], Sect. 48B).

Further kinds of generating functions exist ([3],
Sect. 9-1, [1], Sect. 48).

The Hamilton-Jacobi Equation
In Jacobi’s method to integrate (1) (see [1], Sect. 47 and
[3], Sect. 10-3) with time-independent H , a canonical
transformation (14) is sought such that, in the new vari-
ables, the Hamiltonian K D H.p.p�; q�/; q.p�; q�//

is a function K D K.p�/ of the new momenta
alone, that is, all the q�

i are cyclic. Then in the new
variables – as pointed out above – all the p�

i are
constants of motion and therefore the solutions of the
canonical equations are given by p�

i .t/ D p�
i .0/,

q�
i .t/ D q�

i .0/C t.@K=@p�
i /p�.0/. Inverting the change

of variables yields of course the solutions of (1) in the
originally given variables .p; q/.

According to (14) the required S2.q
�; q/ has to

satisfy the Hamilton-Jacobi equation

H

�
@S2

@q1

; : : : ;
@S2

@qd

; q1; : : : ; qd

�
D K.p�

1 ; : : : ; p�
d /:

This is a first-order partial differential equation ([2],
Vol. II, Chap. II) for the unknown S2 called the
characteristic function; the independent variables are
.q1; : : : ; qd / and it is required to find a particular
solution that includes d independent integration
constants p�

1 , . . . , p�
d (a complete integral in classical

terminology). Jacobi was able to identify, via
separation of variables, a complete integral for several
important problems unsolved in the Lagragian format.
His approach may also be used with S1 and the other
kinds of generating functions.

Time-dependent Generating Functions
So far we have considered time-independent canonical
changes of variables. It is also possible to envisage
changes .p�; q�/ D �.p; qI t/, where, for each fixed
t , � is canonical. An example is afforded by (14) if the
generating function includes t as a parameter: S2 D
S2.p

�; qI t/. In this case, the evolution of .p�; q�/ is
governed by the Hamiltonian equations (1) associated
with the Hamiltonian K D H C @S2=@t , where in
the right-hand side it is understood that the arguments
.p; q/ of H and .p�; q/ of S2 have been expressed as

functions of the new variables .p�; q�/ with the help of
formulae (14). Note the contribution @S2=@t that arises
from the time-dependence of the change of variables.

If S2 D S2.p
�; qI t/ satisfies the Hamilton-Jacobi

equation

H

�
@S2

@q1

; : : : ;
@S2

@qd

; q1; : : : ; qd I t

�
C @S2

@t
D 0; (16)

then the new Hamiltonian K vanishes identically and
all p�

i and q�
i remain constant; this trivially determines

the solutions .p.t/; q.t// of (1). In (16) the indepen-
dent variables are t and the qi and it is required to
find a complete solution, that is, a solution S2 that
includes d independent integration constants p�

i . It is
easily checked that, conversely, (1) is the characteristic
system for (16), so that it is possible to determine
all solutions of (16) whenever (1) may be integrated
explicitly ([2], Vol. II, Chap. II).

Hamiltonian Dynamics

Symplecticness of the Solution Operator
We denote by ˚H

t;t0
the solution operator of (1) (t , t0 are

real numbers in the interval I ). By definition, ˚H
t;t0

is a
transformation that maps the point .p0; q0/ in ˝ into
the value at time t of the solution of (1) that satisfies
the initial condition p.t0/ D p0, q.t0/ D q0. Thus,
if in ˚H

t;t0
.p0; q0/ we keep t0, p0, and q0 fixed and

let t vary, then we recover the solution of the initial-
value problem given by (1) in tandem with p.t0/ D p0,
q.t0/ D q0. However, we shall be interested in seeing
t and t0 as fixed parameters and .p0; q0/ as a variable
so that ˚H

t;t0
represents a transformation mapping the

phase space into itself. (It is possible for ˚H
t;t0

not to
be defined in the whole of ˝; this happens when the
solutions of the initial value problem do not exist up
to time t .) Note that ˚H

t2;t0
D ˚H

t2;t1
ı ˚H

t1;t0
for each t0,

t1, t2 (the circle ı means composition of mappings). In
the autonomous case where H D H.y/, ˚H

t;t0
depends

only on the difference t � t0 and we write �H
t�t0

instead
of ˚H

t;t0
; then the flow �H

t has the group property:
�H

tCs D �H
t ı �H

s , for each t and s.
The key geometric property of Hamiltonian systems

is that ˚H
t;t0

is, for each fixed t0 and t , a canonical
transformation ([1], Sect. 44). In fact the canonicity of
the solution operator is also sufficient for the system to
be Hamiltonian (at least locally).
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The simplest illustration is provided by the har-
monic oscillator: d D 1, H D .1=2/.p2 C q2/.
The t-flow .p�; q�/ D �t .p; q/ is of course given by
(11) with � D t , a transformation that, as remarked
earlier, is canonical. The group property of the flow is
the statement that rotating through � radians and then
through � 0 radians coincides with a single rotation of
amplitude � C � 0 radians.

The Generating Function of the Solution
Operator
Assume now that we subject (1) to the t-dependent
canonical change of variables .p�; q�/ D � H

t0;t .p; q/

with t0 fixed. The new variables .p�; q�/ remain con-
stant: .p�.t/; q�.t// D � H

t0;t .p.t/; q.t// D � H
t0;t ı

� H
t;t0

.p.t0/; q.t0// D .p.t0/; q.t0//. Therefore, the new
Hamiltonian K.p�; q�I t/ must vanish identically and
the generating function S2 of � H

t0;t must satisfy (16).
Now, as distinct from the situation in Jacobi’s method,
we are interested in solving the initial value problem
given by Hamilton-Jacobi equation (16) and the initial
condition S.p�; qI t0/ D p�T q (for t D t0 the
transformation � H

t0;t is the identity).
As an illustration, for the harmonic oscillator, as

noted above, � H
t0;t is given by (11) with � D t0 � t ; a

simple computation shows that its generating function
found in (15) satisfies the Hamilton-Jacobi equation
.1=2/

�
.@S2=@q/2 C q2

� C @S2=@t D 0.

Symplecticness Constrains the Dynamics
The canonicity of ˚H

t;t0
has a marked impact on the

long-time behavior of the solutions of (1). As a simple
example, consider a system of two scalar differential
equations Pp D f .p; q/, Pq D g.p; q/ and assume that
.p0; q0/ is an equilibrium where f D g D 0. Generi-
cally, that is, in the “typical” situation, the equilibrium
is hyperbolic: the real parts of the eigenvalues �1 and
�2 of the Jacobian matrix @.f; g/=@.p; q/ evaluated at
.p0; q0/ have nonzero real part and the equilibrium is
a sink (<�1 < 0, <�2 < 0), a source (<�1 > 0,
<�2 > 0), or a saddle (<�1 > 0, <�2 < 0).
The situation where �1 and �2 are conjugate purely
imaginary numbers does not arise typically: small
perturbations change it into either a sink or a source.
However, if we restrict the attention to Hamiltonian
systems the situation changes completely: sinks and
sources cannot appear, because in their neighborhood
the flow contracts (expands) area. The case <�1 D 0,
<�2 D 0 is now not exceptional: it persists under small
Hamiltonian perturbations.

Similar considerations apply to periodic orbits, in-
variant tori, etc. To sum up, thanks to symplecticness,
dynamical features that are exceptional for general
systems become the rule for Hamiltonian systems.
Conversely features that are typical for general systems
cannot arise at all in Hamiltonian problems.

Poisson Brackets

Let us present yet another useful tool of the Hamil-
tonian formalism. Although some of the results to be
discussed are valid for general Hamiltonians H D
H.yI t/, for simplicity, we shall assume in the rest
of this Encyclopedia entry that all Hamiltonians are
autonomous H D H.y/.

Definition
If F , G are smooth real functions defined in the phase
space ˝ , their Poisson bracket is the real function

fF; Gg D rF T J �1rG; i:e:;

fF; Gg D
dX

iD1

�
@F

@qi

@G

@pi

� @F

@pi

@G

@qi

�
: (17)

Clearly the operation f�; �g is bilinear and skew-
symmetric, that is, fF; Gg D �fG; F g. It further-
more satisfies Jacobi’s identity: if F , G, and H are
smooth functions then fF; fG; H gg C fG; fH; F gg C
fH; fF; Ggg D 0.

Canonical changes of variables do not alter the value
of the Poisson bracket: if y D �.z/ is canonical, then
the Poisson bracket of the functions F.�.z//, G.�.z//
may be obtained by first computing fF; Gg and then
substituting y D �.z/. In fact a transformation is
canonical if and only if it does not change the value
of the Poisson bracket ([6], Remark 12.1).

Poisson Brackets and Hamiltonian Systems
From (17), (1) may be rewritten as Pyi D fyi ; H g,
i D 1; : : : ; 2d . More generally, if F is any smooth
real function defined in ˝ , the value at a point
y0 2 ˝ of fF; H g coincides with the rate of
change .d=dt/F.�H

t .y0//tD0. This has two important
implications ([1], Sect. 40):
(a) F is a first integral of (1) if and only if fF; H g � 0.
(b) The differential operator LJ �1rH associated with

the vector field J �1rH in (1) coincides with
F 7! fF; H g. (Recall that, given the system
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Py D f .y/ with vector field f and flow �
f
t , Lf

is, by definition, the differential operator that maps
each real function F into the real function that at y

takes the value .d=dt/F.�
f
t .y//tD0. By the chain

rule, Lf F D P
i fi .y/.@F=@yi /.)

In turn, (a) together with Jacobi’s identity yield
immediately Poisson’s theorem: The Poisson bracket
of two first integrals of (1) is again a first integral.
An example: if two of the cartesian components of
the angular momentum of a mechanical system are
conserved, so is the third.

Assume next that H is kept invariant by a Hamil-
tonian flow �F

t , that is, H ı �F
t � H . According to

(a), fH; F g � 0, and by skew-symmetry fF; H g � 0.
A new application of (a) shows that F is a first integral
of (1). In this way we have obtained a generalization of
a well-known theorem of Noether [1]: to each group of
symmetries that leave invariant a mechanical system
there corresponds a constant of motion. Here is the
simplest example. The flow of F D p1 is given by
the translations along the q1 axis .p; q/ 7! .p; q1 C
t; q2; : : : ; qd /, so that H is invariant if and only if q1 is
cyclic. The general result in this paragraph yields, once
again, the known statement “the momentum conjugate
to a cyclic coordinate is a first integral.”

Before we point out some consequences of (b), we
recall ([1], Sect. 39C), that, if f .y/ and g.y/ are vector
fields on the same phase space with operators Lf and
Lg , then LgLf � Lf Lg is the operator Lh associated
with a new vector field h, denoted by h D Œf; g	 and
called the Lie bracket or commutator of f and g. This
notion is relevant in view of the following result: Œf; g	

vanishes identically if and only if the flows �
f
t and �

g
t

commute, that is, �
f
t ı �

g
s D �

g
s ı �

f
t , for each

t and s.
From the Jacobi identity and (b) it is easily con-

cluded that the commutator of the Hamiltonian vector
fields with Hamiltonian functions F , G is again a
Hamiltonian vector field and that the corresponding
Hamiltonian is fF; Gg. In particular the flows �F

t and
�G

t commute if and only if the Hamiltonian vector field
associated with fF; Gg vanishes, that is, if and only if
fF; Gg is (locally) constant.

Integrability: Perturbation Theory

As we have seen in connection with Jacobi’s method,
the possibility of integrating effectively Hamiltonian

system is closely related to the existence of sufficiently
many conserved quantities.

The integrability theorem of Liouville and Arnold
([1], Sect. 49, [4], Chap. X), that we sketch next, ad-
dresses this issue. It is assumed that the system (1)
has d (independent) conserved quantities Fi and that
these are in involution, that is, fFi ; Fj g D 0 if i ¤ j .
Each level set of the form M.a1; : : : ; ad / D fy W
F1.y/ D a1; : : : ; Fd .y/ D ad g is a smooth manifold
invariant by the flow �H

t ; furthermore, it may be proved
that if the level sets M.a1; : : : ; ad / are compact and
connected, then each of them will be (diffeomorphic
to) a d -dimensional torus. In that case it is possible to
compute explicitly (in terms of quadratures) a canon-
ical change of variables p D p.I; ˛/, q D q.I; ˛/

to the so-called action/angle variables .I; ˛/ so that
the new Hamiltonian K is independent of the ˛i and
therefore the equations of motion read

PIi D 0; P̨ i D @K

@Ii

; i D 1; : : : ; d:

The actions Ii are first integrals; their level sets fy W
I1.y/ D b1; : : : ; Id .y/ D bd g coincide with the
invariant tori of the dynamics. Each invariant torus is
parameterized by the d variables ˛i that are angles
(increasing them by 2
 leads to the starting point in
.p; q/). On any fixed torus each ˛i varies at a constant
angular velocity @K=@Ii , so that the motion is quasi-
periodic.

For the harmonic oscillator in non-dimensional
form H D .1=2/.p2 C q2/ the invariant sets are the
circles p2 C q2 D constant; the canonical change of
variables is given by p D p

2I cos ˛, q D p
2I sin ˛,

so that I D H . (In dimensional variables the action I

would be the ratio of the energy H to the frequency of
oscillation.)

When the hypotheses of the Arnold-Liouville theo-
rem hold, the dynamics of (1) are perfectly understood.
At the other end of the spectrum, the behavior of the
solutions of Hamiltonian systems away from integra-
bility may be bewildering complicated. An intermedi-
ate situation is that where the system, without being
integrable, may be seen as a small perturbation of an
integrable one. The literature contains many important
results on perturbation theory. The most celebrated is
the Kolmogorov-Arnold-Moser (KAM) theorem ([1],
Sect. 49, [4], Chap. X) that ensures that, under suitable
hypotheses, most invariant tori of the unperturbed case
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do not disappear under perturbation. The book [5]
gathers a number of important contributions to the
study of Hamiltonian dynamics.

Extensions

The canonical format (1) is only the simplest and
historically first of a series of Hamiltonian formats that
appear in the applications. Here are more formats:

Changing the Structure Matrix
It is possible ([4], Chap. VII), while keeping the form in
(2), to replace the so-called structure matrix J defined
in (3) by a more general invertible, skew-symmetric
matrix eJ .y/ (note the dependence on y and that the
dimension of the phase space is still necessarily even
as skew-symmetric matrices of odd dimension are
singular). Most of the theory goes through provided
that the associated Poisson bracket (defined as in the
first equality in (17)) satisfies the Jacobi identity. In this
setup it is also possible to define the symplecticness of
a transformation via (9). The matrix eJ .y/ defines then
a noncanonical symplectic structure.

Poisson Structures
Another possibility ([6], Sect. 14.5, [4], Chap. VII) is
to use (2) with J �1 replaced by a non-invertible,
skew-symmetric matrix B.y/. Again B.y/ has to be
chosen in such a way that the Jacobi identity for
the Poisson bracket (defined by the first equality in
(17) with B.y/ in lieu of J �1) holds. Here it is
not possible to generalize the definition in (9), which
would require the inverse of the non-invertible B.y/;
there is no symplectic structure and one speaks of
a Poisson structure. Note that the dimension of the
phase space is not necessarily even. A salient feature of
Poisson structures is the existence of Casimir functions
C such that rC.y/T B.y/ � 0. Since fC; H g D 0

if C is a Casimir function and H arbitrary, Casimir
functions are constants of motion for all systems of the
form Py D B.y/rH.y/, regardless of the choice of
Hamiltonian H .

Differential Geometry
So far all variables have been points in Euclidean
spaces. However, symplectic and Poisson structures
may be defined on manifolds [1] and in fact, in many
applications, the problems investigated appear natu-

rally in a manifold context and only a, more or less
arbitrary, choice of local coordinates allows to rephrase
them in a Euclidean setting.

Hamiltonian Partial Differential Equations
Many evolutionary partial differential equations may
also be understood as (infinite dimensional) Hamilto-
nian systems. Typically, each point u in phase space is
a smooth real or vector-valued function of one or more
spatial variables. The real functions F , H , . . . defined
in phase space are functionals and the operator r in
(2) is replaced by the variational derivative ı=ıu. An
example follows, but very many other exist including
the Korteweg-de Vries equation, linear and nonlinear
Schroedinger equations, etc. (see [6], Sect. 14.7). As-
sume that u D .p; q/ with p, q smooth real functions
of the variable x, 0 � x � 1, satisfying homogeneous
Dirichlet boundary conditions. If H is the functional

H.u/ D 1

2

Z 1

0

�
p.x/2 C qx.x/2

�
dx

then (qxx appears after integrating by parts)

H.u C �eu /

D H.u/ C �

Z 1

0

�
p.x/ep.x/ � qxx.x/eq.x/

�
dx

CO.�2/:

Therefore, ıH=ıp D p, ıH=ıq D �qxx and we have
the following Hamiltonian system (note the analogy
with (1) with i replaced by x)

@

@t
p D �ıH

ıq
D qxx;

@

@t
q D ıH

ıp
D p;

where, after eliminating p, we recognize the familiar
wave equation.
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Synonyms

HJ equations

Definition

The Hamilton–Jacobi equation (HJE) is a first-order
nonlinear partial differential equation. The HJE first
appeared in the studies of W. R. Hamilton (1805–1865)
and C. G. J. Jacobi (1804–1851) in the field of classical
mechanics [7]. The interest of mathematicians started
in the 1950s and grew considerably since the 1980s
with the introduction of the theory of viscosity solu-
tions [2,3]. Nowadays, it is encountered in problems of
mechanics, geometry, optics, front propagation, com-
puter vision, optimal control, and differential games.
The general form of the HJE is

@u

@t
.x; t/

CH.x; t; u.x; t/; Dxu.x; t// D 0; x 2 ˝; t > 0 ;

where ˝ is an open domain of Rn, x D .x1; : : : ; xn/,
u W ˝ � .0; C1/ ! R is the unknown, the Hamilto-
nian H W Rn � R

C � R � R
n ! R is given, and Dx D�

@
@x1

; : : : ; @
@xn

	
.

The HJE can be also written in an equivalent time-
independent form

bH.y; u.y/; Dyu.y// D 0; y 2 b̋ ;

defining y WD .x; t/, b̋ WD ˝ � .0; C1/, and, for any
p 2 R

nC1,

bH.y; u; p/ WD pnC1

CH.y1; : : : ; yn; ynC1; u; p1; : : : ; pn/ ; y 2 b̋:

Original Formulation in Classical
Mechanics

Consider a system described by the generalized coor-
dinates q D q.t/ 2 R

n, the generalized velocities Pq.t/,
and the Lagrangian function L.q; Pq; t/. The Hamilto-
nian H of the system is

H.q; p; t/ WD p � Pq.q; p; t/ � L.q; Pq.q; p; t/; t/

where pi .t/ D @L
@ Pq .q; Pq; t/, i D 1; : : : ; n are the

coordinates of the generalized momentum and Pq is
written as a function of .q; p; t/. For any .t0; q0/, define

S.x; t/ WD inf


Z t

t0

L.q.s/; Pq.s/; s/ds

�

where the infimum is taken over all C 1 trajectories q.�/
starting from q0 at time t0 and ending at x at time t .
Then, the function S.x; t/ is solution of the HJE [5, 7]

@S

@t
.x; t/ C H.x; DxS.x; t/; t/ D 0:

Theoretical Results

It is easy to see that the HJE equation can lack of
classical solutions (i.e., of class C 1) while can have
multiple weak solutions (i.e., solutions which are a.e.
differentiable and satisfy the equation where differ-
entiable). Consider, for example, the one-dimensional
eikonal equation jDxuj D 1, x 2 Œ�1; 1	, comple-
mented with boundary conditions u.�1/ D u.1/ D 0.
Both functions u1.x/ D �jxj C 1 and u2.x/ D jxj � 1

are weak solutions.
Existence and uniqueness results can be achieved

by means of the notion of viscosity solution [2, 3].


