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Modified Hamiltonian Monte Carlo (MHMC) methods combine the ideas behind two 
popular sampling approaches: Hamiltonian Monte Carlo (HMC) and importance sampling. 
As in the HMC case, the bulk of the computational cost of MHMC algorithms lies in 
the numerical integration of a Hamiltonian system of differential equations. We suggest 
novel integrators designed to enhance accuracy and sampling performance of MHMC 
methods. The novel integrators belong to families of splitting algorithms and are therefore 
easily implemented. We identify optimal integrators within the families by minimizing the 
energy error or the average energy error. We derive and discuss in detail the modified 
Hamiltonians of the new integrators, as the evaluation of those Hamiltonians is key to the 
efficiency of the overall algorithms. Numerical experiments show that the use of the new 
integrators may improve very significantly the sampling performance of MHMC methods, 
in both statistical and molecular dynamics problems.

Published by Elsevier Inc.

1. Introduction

Hybrid/Hamiltonian Monte Carlo (HMC) [1,2] and importance sampling [3] algorithms have been effectively used for 
sampling in molecular simulation and computational statistics. Successful alternatives to these two approaches may be 
found within the class of modified Hamiltonian Monte Carlo (MHMC) methods that combine HMC and importance sam-
pling, as suggested in [4–6]. Taking advantage of the fact that symplectic integrators preserve modified Hamiltonians more 
accurately than they conserve the true Hamiltonian, the authors of those references proposed to sample with respect to 
modified/shadow Hamiltonians and to recover the target distribution by reweighting. The resulting algorithms are capable 
of maintaining high acceptance rates and usually exhibit better efficiency than their predecessor HMC, that samples with 
respect to the true Hamiltonian [7–10,6].

The first methods of the MHMC class were derived for atomistic simulations and differed from each other in the way of 
performing the three main components of the algorithm–momentum updates, computation of modified Hamiltonians and 
integration of the Hamiltonian dynamics. For example, in the (Separable) Shadow Hybrid Monte Carlo methods [4,11] a full 
momentum update is used, whereas in Targeted Shadow Hybrid Monte Carlo [12] and Generalized Shadow Hybrid Monte 
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Carlo (GSHMC [5]) suitable modifications of the partial momentum update of [13] are advocated in order to better mimic 
the dynamics and to enhance sampling. More recent MHMC methods aim at specific applications such as computational 
statistics (Mix&Match Hamiltonian Monte Carlo [6]), or, in molecular problems, multi-scale (MTS-GSHMC [14]), meso-scale 
(meso-GSHMC [15]) and solid-state (RSM-GSHMC [10]) simulations. As demonstrated in the original papers, for particu-
lar problems, the use of MHMC methods resulted in a sampling efficiency several times higher than that observed with 
conventional sampling techniques, such as Molecular Dynamics, Monte Carlo (MC) and HMC.

Two elements critically affect the efficiency of MHMC methods. On the one hand, the calculation of modified Hamilto-
nians at every Monte Carlo step introduces computational overheads when compared to HMC, and hence finding efficient 
ways of calculating modified Hamiltonians is of interest. On the other hand, the accuracy of the numerical integrator directly 
influences the acceptance rate of the generated proposals and therefore the sampling efficiency. Verlet/leapfrog has been the 
integrator of choice for MHMC methods and until recently such a choice has never been challenged. On the contrary, the 
search for the best performing integrator for Hamiltonian problems and especially for HMC has been a live research topic 
for a decade [16–20]. In particular, it has been demonstrated that replacing in HMC the standard Verlet integrator with a 
splitting integrator that includes a specifically chosen parameter value may significantly improve, for a range of step sizes, 
the conservation of the Hamiltonian and thus the overall performance of the algorithm [16,17].

The goal of this paper is to adapt to MHMC methods the splitting schemes introduced in the literature as success-
ful alternatives to Verlet in the HMC case. In particular, we propose novel multi-stage integrators that may improve the 
conservation of modified Hamiltonians for a range of time steps and, as a consequence, the sampling performance in the 
MHMC methods. These integrators are characterized by parameter values resulting from minimization of the (expected) 
Hamiltonian error introduced by integration. More specifically, we derive two- and three-stage integrators along with their 
corresponding modified Hamiltonians, and investigate their performance within two specific MHMC methodologies, GSHMC 
[5] and MMHMC [6], developed for molecular simulation and computational statistics, respectively.

The paper is structured as follows. In Section 2 we present a brief review of modified HMC methods and their main com-
ponents. In Section 3 we provide new formulations of modified Hamiltonians of 4th and 6th order for splitting integrating 
schemes that include families of two- and three-stage integrators. Section 4 provides new, optimized, multi-stage integrators 
arising from two different optimization approaches, namely (i) minimization, in the limit where the step-size approaches 0, 
of the error in modified Hamiltonian introduced by numerical integration, and (ii) minimization, for finite step-sizes, of the 
expected value of that error. Section 5 is devoted to testing the new integrators. We give details of the methods and models 
tested and the performance metrics employed, together with results of comparisons between the approaches suggested here 
and other popular integration techniques for HMC methods. Our conclusions are summarized in Section 6.

2. Modified Hamiltonian Monte Carlo methods

The goal of a modified Hamiltonian Monte Carlo (MHMC) method is to estimate an integral

I =
∫

f (x)π(x)dx, (1)

i.e. the expected value of a function of interest f with respect to the density π(x), known up to a multiplicative constant, 
of a position variable x. Instead of sampling from the canonical distribution

π(x,p) ∝ exp (−βH(x,p)) (2)

(β is the inverse temperature, H the Hamiltonian and p the auxiliary momentum variable), as is the case of general HMC 
algorithms, MHMC methods sample from an importance canonical density

π̃ (x,p) ∝ exp
(
−β H̃ [k](x,p)

)
, (3)

where H̃ [k] denotes the kth order truncation of the modified Hamiltonian H̃ that is preserved exactly by the symplectic 
integrator under consideration.

In this paper we consider separable Hamiltonians

H(x,p) = U (x) + 1

2
pT M−1p, (4)

with M a symmetric positive definite matrix (mass matrix) and U the potential function. The dynamics associated to this 
Hamiltonian is governed by the system of ordinary differential equations

dx

dt
= M−1p,

dp

dt
= −Ux(x). (5)

We describe now a generic algorithm for an MHMC method. Given a sample (x, p) from the distribution π̃ , the next 
sample (xnew, pnew) is determined as follows:
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• Define the new momentum p∗ by applying a momentum refreshment procedure that preserves the importance density 
π̃ in (3).

• Generate a proposal (x′, p′) by simulating, using a symplectic and reversible numerical integrator, the Hamiltonian 
system (5) with initial condition (x, p∗).

• Accept the proposal as the next sample (xnew, pnew) with probability

α = min

{
1,

π̃ (x′,p′)
π̃ (x,p∗)

}
.

Otherwise, set (xnew, pnew) to (x, −p∗), i.e., flip the momentum.

Once the samples have been obtained using MHMC, importance reweighting is required in order to estimate (1), since 
the samples are generated with respect to the importance density (3) on the joint state space. The desired distribution π(x)

is recovered by marginalizing momenta variables from (2). If fn = f (xn), n = 1, 2, . . . , N , are the values of an observable 
along a sequence of states (xn, pn) drawn from π̃ , (1) is estimated as

Î =
∑N

n=1 wn fn∑N
n=1 wn

, (6)

where the importance weights are given by

wn = exp
(
−β

(
H(xn,pn) − H̃ [k](xn,pn)

))
.

3. Modified Hamiltonians for splitting integrators

Our intention is to use within MHMC methods numerical integrators that may offer better conservation properties than 
the commonly used Verlet/leapfrog integrator. More specifically, we are interested in numerical integrators belonging to the 
two-stage

ψh = ϕB
bh ◦ ϕ A

h
2

◦ ϕB
(1−2b)h ◦ ϕ A

h
2

◦ ϕB
bh (7)

and three-stage

ψh = ϕB
bh ◦ ϕ A

ah ◦ ϕB
( 1

2 −b)h
◦ ϕ A

(1−2a)h ◦ ϕB
( 1

2 −b)h
◦ ϕ A

ah ◦ ϕB
bh (8)

families of splitting methods, that require two or three gradient evaluations per step, respectively. The exact flows ϕ A
h and 

ϕB
h are solutions to the split systems

A : dx

dt
= 0,

dp

dt
= −Ux(x), (9)

and

B : dx

dt
= M−1p,

dp

dt
= 0, (10)

respectively, corresponding to the potential and kinetic energies in the Hamiltonian (4). A specific integrator is fully char-
acterized by the choice of values for the coefficients {b} or {a, b}. While it is possible to swap the roles of the kinetic and 
potential energies in the splitting algorithms, in this study we only consider integrators starting with an update of momenta 
for reasons discussed in detail in [20].

We point out that for the specific choice b = 1/4, the application of ψh in (7) yields the same result as performing two 
consecutive Verlet steps each with step size h/2. Similarly for b = 1/6, a = 1/3, (8) is equivalent to three Verlet steps of size 
h/3. It is also important to emphasize that since one step of a splitting integrator consists of a sequence of flows of (9)–(10)
(some times called kicks and drifts respectively), the implementation of methods of the families (7)–(8) is very similar to 
that of the Verlet algorithm. Therefore, it is easy to incorporate splitting algorithms to existing software based on the Verlet 
integrator.

To use splitting integrators within an MHMC method, appropriate modified Hamiltonians are required. For the Verlet 
integrator, one procedure to compute modified Hamiltonians of orders up to 24 is provided in [21,22]. It is further improved 
in [23] using Richardson extrapolation. That approach could be generalized to multi-stage integrators. However, it requires 
a modification of the integrator by introducing into the dynamics an additional scalar variable. We therefore opt here for 
a different strategy. For the families of splitting integrators above, we begin by writing the expansion of the modified 
Hamiltonian in terms of Poisson brackets of the partial Hamiltonians A and B of the split systems (9)–(10). We recall that 
the Poisson bracket of two functions F , G : R2D → R is defined as
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{F , G}(z) = Fz(z)T JGz(z), J =
[

0 I
−I 0

]
.

The expression for the modified Hamiltonian H̃ is found to be

H̃ = H + h2α{A, A, B} + h2β{B, B, A}
+ h4γ1{A, A, A, A, B} + h4γ2{B, A, A, A, B} (11)

+ h4γ3{B, B, A, A, B} + h4γ4{A, A, B, B, A} +O(h6),

where α, β, γ1−4 are polynomials in the integrator coefficients b or a, b [17] and expressions such as {A, A, B} refer to 
iterated Poisson brackets {A, {A, B}}.

The expressions for the expansion of H̃ to arbitrarily high order may be obtained by directly applying the Baker–
Campbell–Hausdorff (BCH) formula to the exponentials of the Lie derivatives of the partial Hamiltonians A and B . Recall 
that the Lie derivative with respect to a function F : R2D → R is defined in terms of Poisson bracket as

LF (·) = {·, F }. (12)

Unfortunately, computations based on the BCH firmula are cumbersome if the order is high [24]. Alternatively, for symmetric 
composition methods, the coefficients multiplying the Poisson brackets for the 4th, 6th and 8th order truncations of the 
modified Hamiltonian can be derived from expressions presented in [25].

Here we propose two alternative ways to derive the expression for the 4th and 6th order modified Hamiltonians. The 
first uses derivatives of the potential function, obtained either by automatic differentiation or from analytical expressions, 
whereas the second relies on numerical time derivatives of the gradient, obtained through quantities available along the 
simulation.

3.1. Modified Hamiltonians in terms of derivatives of the potential

For problems in which derivatives of the potential function can be computed, either from analytical expressions or using 
automatic differentiation, we derive the 4th and 6th order modified Hamiltonians by first expanding the iterated brackets 
in (11) using the definition of the Poisson bracket. This yields

{A, A, B} = pT M−1Uxx(x)M−1p

{B, B, A} = Ux(x)T M−1Ux(x)

{A, A, A, A, B} = Uxxxx(x)M−1pM−1pM−1pM−1p

{B, A, A, A, B} = −3Ux(x)T M−1Uxxx(x)M−1pM−1p

{B, B, A, A, B} = 2Ux(x)T M−1Uxx(x)M−1Ux(x)

{A, A, B, B, A} = 2Ux(x)T M−1Uxxx(x)M−1pM−1p + 2pT M−1Uxx(x)M−1Uxx(x)M−1p

and leads to the following 4th and 6th order modified Hamiltonians for splitting integrators

H̃ [4](x,p) =H(x,p) + h2c21pT M−1Uxx(x)M−1p + h2c22Ux(x)T M−1Ux(x), (13)

H̃ [6](x,p) =H̃ [4](x,p) + h4c41Uxxxx(x)M−1pM−1pM−1pM−1p (14)

+ h4c42Ux(x)T M−1Uxxx(x)M−1pM−1p

+ h4c43Ux(x)T M−1Uxx(x)M−1Ux(x)

+ h4c44pT M−1Uxx(x)M−1Uxx(x)M−1p,

where

c21 = α, c22 = β, c41 = γ1, c42 = 2γ4 − 3γ2, c43 = 2γ3, c44 = 2γ4. (15)

The coefficients α, β, γ1−4 can be derived from expressions given in [25] where the authors analyzed so-called force-gradient 
integrators for molecular dynamics. In particular, they considered splitting integrators that are extended by an additional 
higher-order operator into the single-exponential propagators. If the potential function is quadratic, i.e. corresponding to 
problems of sampling from Gaussian distributions/harmonic oscillators, {A, A, A, A, B} = 0 and {B, A, A, A, B} = 0, and then 
the 6th order modified Hamiltonian (14) simplifies to
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Fig. 1. Computational overhead of MMHMC compared to HMC for models with a tridiagonal (left) and a dense Hessian matrix (right) using the 4th order 
modified Hamiltonian (13) with all required derivatives calculated analytically.

H̃ [6](x,p) = H̃ [4](x,p) + h4c43Ux(x)T M−1Uxx(x)M−1Ux(x) + h4c44pT M−1Uxx(x)M−1Uxx(x)M−1p.

Combining (15) with the expressions for α, β, γ1−4, we obtain the following coefficients for the two-stage integrator 
family (7)

c21 = 1

24

(
6b − 1

)
c22 = 1

12

(
6b2 − 6b + 1

)
c41 = 1

5760

(
7 − 30b

)
c42 = 1

240

(
− 10b2 + 15b − 3

)
c43 = 1

120

(
− 30b3 + 35b2 − 15b + 2

)
c44 = 1

240
(20b2 − 1).

(16)

For three-stage integrators (8) (a two-parameter family), we get

c21 = 1

12

(
1 − 6a(1 − a)(1 − 2b)

)
c22 = 1

24

(
6a(1 − 2b)2 − 1

)
c41 = 1

720

(
1 + 2(a − 1)a(8 + 31(a − 1)a)(1 − 2b) − 4b

)
c42 = 1

240

(
6a3(1 − 2b)2 − a2(19 − 116b + 36b2 + 240b3) + a(27 − 208b + 308b2) − 48b2 + 48b − 7

)
c43 = 1

180

(
1 + 15a(1 − 2b)(−1 + 2a(2 − 3b + a(4b − 2)))

)
c44 = 1

240

(
− 1 + 20a(1 − 2b)(b + a(1 + 6(b − 1)b))

)
.

(17)

Using (16) one can also obtain the modified Hamiltonian for the Verlet integrator, since, as pointed out above, two steps 
of Verlet integration with step size h/2 are equivalent to one step with step size h of the two-stage integrator with b = 1/4. 
In this way the Verlet coefficients are found to be

c21 = 1

12
, c22 = − 1

24
(18)

c41 = − 1

720
, c42 = 1

120
, c43 = − 1

240
, c44 = 1

60
.

Fig. 1 illustrates, for two-stage integrators, the computational overheads, with respect to the HMC method, of MMHMC 
based on the 4th order modified Hamiltonian (13). The left-hand graph presents the overhead for a model with a tridiagonal 
Hessian matrix Uxx(x), as appeared in the stochastic volatility model [7], and indicates that, for two different dimensions D
of the system, the overhead becomes negligible as the number of integration steps increases. In contrast, for models with 
a dense Hessian matrix, as appeared in the Bayesian logistic regression model [7], computation of modified Hamiltonians 
may introduce a significant additional cost, as shown in the right-hand graph.
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3.2. Modified Hamiltonians in terms of time derivatives of the gradient

For applications where the potential function has a dense Hessian matrix (and tensors of higher derivatives), the over-
head resulting from the computation of modified Hamiltonians reduces the advantages of MHMC methods. In order to 
implement such computations in an efficient manner, we propose to express modified Hamiltonians in terms of quantities 
that are available during the simulation, as done in [5]. However, instead of making use of time derivatives of the position 
vectors, as in the original GSHMC method [5], here we employ time derivatives of the gradient of the potential function, as 
follows (superscripts in brackets indicate the order of the time derivative)

U (1)
x = Uxx(x)M−1p

U (2)
x = Uxxx(x)M−1pM−1p − Uxx(x)M−1Ux(x) (19)

U (3)
x = Uxxxx(x)M−1pM−1pM−1p − 3Uxxx(x)M−1Ux(x)M−1p − Uxx(x)M−1Uxx(x)M−1p.

Substituting the time derivatives (19) into the analytical expressions (13)–(14) for the 4th and 6th order modified Hamilto-
nians, respectively, one obtains

H̃ [4](x,p) = H(x,p) + h2k21pT M−1Ux
(1) + h2k22Ux(x)T M−1Ux(x), (20)

H̃ [6](x,p) = H̃ [4](x,p) + h4k41pT M−1Ux
(3) + h4k42Ux(x)T M−1Ux

(2) (21)

+ h4k43Ux
(1)T

M−1Ux
(1) + h4k44Ux(x)T M−1Uxx(x)M−1Ux(x),

where the coefficients are

k21 = c21, k22 = c22, (22)

k41 = c41, k42 = 3c41 + c42, k43 = c41 + c44, k44 = 3c41 + c42 + c43.

We note that the expression (20) does not include the Hessian of the potential and thus, allows the computation of H̃ [4]
using quantities available from the integration of the dynamics. However, this is not the case for the 6th order Hamiltonians. 
The last term in (21), arising from an expansion of the Poisson bracket {B, B, A, A, B}, cannot be computed using time 
derivatives of available quantities and requires explicit calculation of the Hessian matrix of the potential function. Only for 
the Verlet integrator does this term vanish and the resulting coefficients are

k21 = 1

12
, k22 = − 1

24
,

k41 = − 1

720
, k42 = 1

240
, k43 = 11

720
, k44 = 0.

One can now write explicit expressions for the coefficients kij by substituting the expressions for the coefficients ci j (16) or 
(17) into (22) for two- and three-stage integrators, respectively.

In the original GSHMC method, an interpolating polynomial of the positions x(ti) = xi, i = n − k, . . . , n, . . . , n + k, n ∈
{0, L} is constructed from a numerical trajectory {xi}L+k

i=−k , where k = 2 and k = 3 for the 4th and 6th order modified Hamil-

tonian, respectively. This requires four or six additional gradient calculations in order to compute H̃ [4] or H̃ [6] , respectively. 
Here we choose a different strategy and calculate the polynomial in terms of the gradient of the potential function

U(ti) = Ux(xi), i = n − k, . . . ,n, . . . ,n + k.

With this approach, k = 1 for the 4th order and k = 2 for the 6th order modified Hamiltonian, which implies that the 
evaluation of H̃ [4] and H̃ [6] requires fewer additional gradient computations, namely two and four, respectively. Note that 
k corresponds to a multiple of the full integration step only in the case of the Verlet integrator; for other integrators it is 
the number of stages performed (e.g. k = 2 corresponds to a half integration step of a four-stage method). Also note that an 
efficient implementation does not include the unnecessary integration sub-step that would update momentum at the very 
beginning and very end of the numerical trajectory {Ux(xi)}L+k

i=−k .
Time derivatives of the gradient of the potential function are approximated using central finite differences of second 

order of accuracy for the 4th order modified Hamiltonian

U (1)
x ≈ U(tn+1) − U(tn−1)

2ε
=: U(1),

where ε = h for the Verlet, ε = h/2 for two-stage and ε = ah for three-stage integrators (h is the integration step size and 
a the coefficient in (8)). The 6th order modified Hamiltonian, here considered only for the Verlet and two-stage integrators, 
is calculated using centered differences of fourth order accuracy for the first derivative and second order accuracy for the 
second and third derivatives
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Fig. 2. Computational overhead of MMHMC compared to HMC for models with a tridiagonal (left) and a dense (right) Hessian matrix, using 4th and 6th 
order modified Hamiltonians with numerical approximation of the time derivatives.

U (1)
x ≈ U(tn−2) − 8U(tn−1) + 8U(tn+1) − U(tn+2)

12ε
=: U(1)

U (2)
x ≈ U(tn−1) − 2U(tn) + U(tn+1)

ε2
=: U(2)

U (3)
x ≈ −U(tn−2) + 2U(tn−1) − 2U(tn+1) + U(tn+2)

2ε3
=: U(3),

where ε depends on the integrator as before.
The final expressions for the modified Hamiltonians computed in this way are

H̃ [4](x,p) = H(x,p) + hk21pT M−1 P1 + h2k22Ux(x)T M−1Ux(x) (23)

H̃ [6](x,p) = H̃ [4](x,p) + hk41pT M−1 P3 + h2k42Ux(x)T M−1 P2 (24)

+ h2k43 P T
1 M−1 P1 + h4k44Ux(x)T M−1Uxx(x)M−1Ux(x),

where Pi = U(i) ·hi . Note that the term with coefficient k22 is calculated exactly, i.e. avoiding finite difference approximation; 
this improves the approximation of the modified Hamiltonian when compared to the strategy originally used in GSHMC. 
Also note that, compared to the expressions with analytical derivatives (13) and (14), in the formulations (23) and (24) the 
terms involving the coefficients c21, c41, c42 and c44 are approximated by Pi . The order of accuracy provided by the modified 
Hamiltonians (23) and (24), however, is not affected by these approximations.

The computational overhead of the MMHMC method [6] using the modified Hamiltonians (23) or (24), when compared 
to HMC is shown in Fig. 2 for models with a tridiagonal (left-hand graph) and dense Hessian matrix (right-hand graph) 
of the potential, as described for Fig. 1. Compared to Fig. 1, where all derivatives are calculated analytically, we note that 
for models with a sparse Hessian (left-hand graphs), the 4th order modified Hamiltonian (13) with analytical derivatives 
introduces less computational overhead than (23) with a numerical approximation of the time derivative. This is due to 
the additional forward and backward integration steps, which do not counterbalance the inexpensive Hessian computation. 
For models with a dense Hessian matrix (right-hand graphs) we recommend always using (23), which significantly reduces 
the overhead. The 6th order modified Hamiltonian (24) clearly requires additional computational effort, due to two extra 
gradient calculations per MC iteration. In the following sections we show that using modified Hamiltonians of order higher 
than 4 can be avoided by introducing accurate multi-stage integrators specifically tuned for the MHMC methods.

In summary, we have provided two alternative formulations of the 4th and 6th order modified Hamiltonians correspond-
ing to multi-stage integrators (7)–(8) with arbitrary coefficients. For the cases when derivatives of the potential function are 
available and inexpensive to compute, the modified Hamiltonians can be calculated using (13)–(18). For problems in which 
this is not the case, we provided formulations of modified Hamiltonians which mainly rely on quantities available from the 
simulation. Both approaches can be used with any multi-stage integrator (7)–(8), including the Verlet integrator.

In the following section, we choose the coefficients in the families (7)–(8) so as to obtain methods specifically aimed at 
sampling with modified Hamiltonians.

4. Multi-stage integrators with optimized coefficients

Until now, the Verlet/leapfrog integrator has been the integrator of choice for MHMC methods. In this section, we con-
sider alternative integrators and investigate their competitiveness with the Verlet integrator.

Our focus is on multi-stage integrators belonging to families (7)–(8). There are two reasons for an interest in these 
integrators. One is their potential to achieve, at a given computational cost, higher accuracy than Verlet. More accurate 
integrations imply higher acceptance rates and thus better space exploration. Here it is important to emphasize that, in 
comparisons, different integrators have to be applied with the same computational effort, rather than with the same step 
length; an r-stage integrator requires r gradient evaluations per time step and to be compared with Verlet has to be used 
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with a step length correspondingly longer. A second possible benefit of the integrators of this class is that, due to the extra 
accuracy, they may avoid the need for computationally expensive, higher order modified Hamiltonians.

Our goal is to derive new multi-stage integrators to be used in the methods which sample with modified Hamiltonians 
and compare their impact on the performance of such methods with the efficiency of advanced integrators suitable for HMC 
[16,17] and the Verlet integrator.

In MHMC methods, the equations of motion of the Hamiltonian dynamics are the same as in HMC methods. However, 
MHMC are based on different Metropolis tests where the acceptance rate depends on the capability of the integrator to 
conserve the value of a modified Hamiltonian. Indeed, the sampling performance of MHMC is controlled not by the energy 
error with respect to the true Hamiltonian as in HMC, but by the energy error with respect to the modified Hamiltonian. 
Thus, inspired by the ideas of [16] and [17] for improving HMC performance by minimizing (expected) energy error through 
the appropriate choice of parameters of the integrator, in order to enhance the performance of MHMC, we design the new 
integrators by considering either the error in the modified Hamiltonians H̃ [l] of order l

	 = H̃ [l](
h,L(x,p)) − H̃ [l](x,p), (25)

or the expected values of such errors Eπ̃ (	) taken with respect to the modified canonical density π̃ given by (3). Here 

h,L(x, p) is the hL-time map of the integrator. In order to distinguish the new minimum error and minimum expected 
error integrators for sampling with modified (M) Hamiltonians from the corresponding ones designed for the HMC method, 
we use the prefix M-; for instance M-ME will denote minimum error for sampling with modified Hamiltonians.

4.1. Minimum error (M-ME) integrators

We first construct the minimum error integrators for the 4th order modified Hamiltonian.
The Taylor expansion of the 4th order modified Hamiltonian after one integration step with the method 
h can be 

written as [24]

H̃ [4](x′,p′) = H̃ [4](
h(x,p)) = exp
(
hLH̃

)
H̃ [4](x,p)

= H̃ [4](x,p) + hLH̃ H̃ [4](x,p) + 1

2
h2L2

H̃
H̃ [4](x,p) + . . . ,

where H̃ is the modified Hamiltonian (11) and we have used the Lie derivative (12). The error 	 in H̃ [4] after one integration 
step reads

	(x,p) = h5(γ1{A, A, A, A, A, B}(x,p) + γ1{B, A, A, A, A, B}(x,p)

+γ2{A, B, A, A, A, B}(x,p) + γ2{B, B, A, A, A, B}(x,p)

+γ3{A, B, B, A, A, B}(x,p) + γ3{B, B, B, A, A, B}(x,p)

+γ4{A, A, A, B, B, A}(x,p) + γ4{B, A, A, B, B, A}(x,p)
) +O(h6).

(26)

Thus, as h approaches 0 and the O(h6) remainder may be ignored, an error metric for the 4th order modified Hamilto-
nian can then be defined by the following function of the integrating coefficients

E =
√

γ 2
1 + γ 2

2 + γ 2
3 + γ 2

4 . (27)

The expressions for γ1−4 derived from (15) are

γ1 = c41, γ2 = 1

3
(c44 − c42), γ3 = 1

2
c43, γ4 = 1

2
c44.

The coefficients ci j are calculated from (16) and (17) for two- and three-stage integrators, respectively. For quadratic poten-
tial and kinetic energies, corresponding to the problem of sampling from a Gaussian distribution with a covariance matrix �, 
or harmonic oscillators, the error (26) simplifies to

	(x,p) = h5(γ4 − γ3)(4pT M−1M−1M−1�−1�−1�−1x) +O(h6),

as the other terms involve third (or higher) order partial derivatives of A and B and are equal to zero. Therefore, the error 
metric can be defined as

E Q = |γ4 − γ3|. (28)

In contrast to this approach, the integrator derived in [16] only takes into account the truncation error for the true 
Hamiltonian, rather than the error for the modified Hamiltonian after numerical integration, as we do here.
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Table 1
The splitting integrators for sampling with the true or 4th order modified Hamiltonians developed or tested in this study. Stability limit hmax is presented 
in terms of the three-stage family.

Integrator Application N. of stages Coefficients hmax Ref.

Verlet HMC, MHMC 1 – 6.000 [1,2,4,5]
BCSS2 HMC 2 b = 0.211781 3.951 [17]
M-BCSS2 MHMC 2 b = 0.238016 4.144 this work
ME HMC 2 b = 0.193183 3.830 [16]
M-ME2 MHMC 2 b = 0.230907 4.089 this work
M-ME2gen MHMC 2 b = 0.230610 4.087 this work
BCSS3 HMC 3 a = (1 − 2b)/4(1 − 3b) 4.662 [17,26]

b = 0.118880
M-BCSS3 MHMC 3 a = (1 − 2b)/4(1 − 3b) 4.902 this work

b = 0.144115
M-ME3 MHMC 3 a = (1 − 2b)/4(1 − 3b) 4.887 this work

b = 0.142757
M-ME3gen MHMC 3 a = 0.355423 2.986 this work

b = 0.184569

In order to obtain values for integrating coefficients for the MHMC methods, we minimized the metrics E or E Q on 
the interval (0, 0.5) using Mathematica. For the three-stage family of integrators for problems with quadratic potential and 
kinetic function, i.e. for E Q , we take into account the analysis from [26], where the authors provide the condition for which 
the stability limit is the highest for this kind of integrators. In particular, the integrators that lie on the hyperbola

6ab − 2a − b + 1

2
= 0, (29)

have considerably longer stability limit than others. Therefore, we enforce the relationship between a and b from (29) in the 
minimization of E Q . The resulting values of coefficients for two- and three-stage minimum error integrators for quadratic 
(M-ME2, M-ME3) and general problems (M-ME2gen, M-ME3gen) are given in Table 1. We note that the difference between 
the coefficients for the two versions of the two-stage methods is minor.

The error metric definitions (27) and (28) are based on the assumption that the different iterated brackets that feature 
in (26) contribute equally to the Hamiltonian error. While this assumption is reasonable, in problems where information on 
the relative size of the iterated brackets is available one may modify accordingly the error metric so as to give more weight 
to the error coefficients with larger iterated bracket; of course that change in metric would entail a change in the coefficient 
values resulting from the minimization procedure.

4.2. Minimum expected error integrators (M-BCSS)

The modified Hamiltonians we consider here are of order 4 or 6. We adopt a strategy similar to the one proposed 
in [17], namely to consider the problem of a one-dimensional quadratic potential and to find the parameters of integrators 
that minimize the expected value of the error for a suitable range of finite values of h; note that this is different from 
the procedure above based on the behavior of the algorithms as h approaches 0. In our case, the error (25), resulting from 
numerical integration, is in terms of the modified Hamiltonian and the expected value is taken with respect to the modified 
canonical density π̃ .

As in the case when considering the error in the true Hamiltonian, one may prove that the expected error in the modified 
Hamiltonian Eπ̃ (	) is also positive. The objective is, therefore, to find a function ρ(h, ξ ) that bounds Eπ̃ (	), i.e.

0 ≤ Eπ̃ (	) ≤ 1

β
ρ(h, ξ ).

Here ξ is a parameter vector, i.e. ξ = {b} for two-stage integrators, ξ = {a, b} for three-stage integrators, and h is a dimen-
sionless step size. We omit here the derivation of ρ(h, ξ) as it can be found in [27] and provide the expression for ρ for the 
families of two- and three-stage integrators when sampling with 4th and 6th order modified Hamiltonians. This expression 
is of the form

ρ(h, ξ ) =
(

S Bh + Ch

)2

2S(1 − A2
h)

. (30)

The symbols in the right-hand side are as follows. For the 4th order modified Hamiltonian

S = 1 + 2h2c22

1 + 2h2c21

and for the 6th order modified Hamiltonian
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S = 1 + 2h2c22 + 2h4c43

1 + 2h2c21 + 2h4c44
,

where coefficients ci j depend on the integrator and were derived in Section 3. The h-dependent quantities Ah, Bh, Ch come 
from the matrix M̃h that advances the numerical solution over a single time step in the integration of the harmonic oscil-
lator: [

xn+1
pn+1

]
= M̃h

[
xn

pn

]
, M̃h =

[
Ah Bh
Ch Ah

]
.

For two-stage integrators, the matrix M̃h has the expression

M̃h = B (b) · A

(
1

2

)
· B (1 − 2b) · A

(
1

2

)
· B (b) ,

where

A(a) =
[

1 ah
0 1

]
, B(b) =

[
1 0

−bh 1

]

correspond to mappings ϕ A
h and ϕB

h , respectively. The resulting elements of M̃h are then

Ah = h4

4
b(1 − 2b) − h2

2
+ 1,

Bh = −h3

4
(1 − 2b) + h,

Ch = −h5

4
b2(1 − 2b) + h3b(1 − b) − h.

Similarly, for the three-stage family we compute

M̃h = B(b) · A(a) · B(
1

2
− b) · A(1 − 2a) · B(

1

2
− b) · A(a) · B(b)

and obtain

Ah = h6

4
a2(2a − 1)(1 − 2b)2b + h4

4
a
(

1 − 4b2 − a(1 − 4b)
)

− h2

2
+ 1

Bh = h5

4
a2(1 − 2a)(1 − 2b)2 − h3a(1 − a)(1 − 2b) + h

Ch = h7

4
a2(1 − 2a)(1 − 2b)2b2 + h5

2
a(2a(1 − b) − 1)b(1 − 2b) +

h3

4

(
1 − 2a(1 − 2b)2

)
− h.

Note that the true Hamiltonian can be recovered by setting the coefficients ci j to zero. Doing so, we obtain exactly the 
same function derived in [17]

ρHMC(h, ξ) = (Bh + Ch)
2

2(1 − A2
h)

. (31)

The coefficients ξ can be found by minimizing the function

‖ρ‖(h̄) = max
0<h<h̄

ρ(h, ξ ), (32)

where h̄ is equal to the number of stages in the integrator [17]. Thus we obtain the parameter b = 0.238016 for the 
two-stage M-BCSS2 integrator derived for sampling with the MHMC methods. We note the difference in value for the 
coefficient of the original two-stage BCSS2 integrator, b = 0.21178, introduced for HMC and obtained by minimizing the 
function (32) using (31).

Using again the stability analysis from [26] for three-stage integrators, namely enforcing the condition (29), we obtain 
the coefficients b = 0.1441153, a = (1 − 2b)/4(1 − 3b) for the M-BCSS3 integrator for sampling with MHMC.

In Fig. 3 ‖ρHMC‖(h̄) from (32) and (31) is plotted as a function of the maximal step size h̄ (here normalized to the 
three-stage schemes, i.e. h̄r-stage = r · h̄/3, r = 1, 2, 3) for the two- and three-stage integrators for the HMC method (thin 
lines), and the corresponding function ‖ρ‖ ¯ from (30) and (32) for the two- and three-stage integrators, derived in this 
(h)
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Fig. 3. Upper bound for the expected energy error for the two- (dashed) and three-stage (solid) (M-)BCSS, (M-)ME and Verlet integrators for sampling with 
the true Hamiltonian (thin lines) and 4th order modified Hamiltonian (thick lines). Right-hand graph shows the same functions on a logarithmic scale.

section for sampling with MHMC (thick lines). The functions ‖ρHMC‖(h̄) and ‖ρ‖(h̄) for the Verlet integrator are also plotted. 
We note that the upper bound of the expected error in Hamiltonian, or modified Hamiltonian, and thus the error of the 
method, is lower for integrators derived for MHMC than in the case of the HMC specific integrators, which confirms a 
better conservation of modified Hamiltonians than true Hamiltonians by symplectic integrators. As follows from Fig. 3, the 
multi-stage integrators derived for HMC and MHMC provide better accuracy than Verlet for step sizes less or equal to a 
half stability limit of Verlet, i.e. h̄ = 3, with three-stage integrators being superior to two-stage class. Please notice that h̄
in Fig. 3 refers to a step size for a three-stage integrator. If Verlet is viewed as a single stage integrator, its half stability 
limit corresponds to h̄ = 1. The integrators derived for MHMC guarantee a better accuracy than other integrators for h̄ even 
bigger than 3, which implies their efficiency for longer step sizes compared with Verlet and multi-stage integrators for HMC. 
A logarithmic scale version of the left-hand graph, shown in the right-hand graph, gives a better insight into the behavior 
of the functions.

It is important to note that the Verlet integrator has the largest stability interval1 among other multi-stage integrators, 
and due to this, care should be taken of the choice of the step size. This fact has been considered in previous studies 
[19,20,27]. The stability intervals computed for the considered model problem and for each of the examined integrators are 
given in Table 1 in terms of the three-stage family. We note that the trends of the stability limit hmax for each integrator are 
in agreement with the corresponding upper bound functions. Nevertheless, as Fig. 3 suggests, the accuracy is degrading with 
h̄ approaching the stability limit. It is the characteristics of the sampling problem (such as the dimension of the system, 
number of observations, nature of the underlying model) that determine the optimal step size and therefore the integrator 
which would provide the best performance.

5. Numerical experiments

In this section we examine the performance of the novel schemes on two benchmark models and compare them against 
Verlet and integrators suggested in the literature to be used within HMC algorithms.

5.1. Algorithms and performance metrics used

For the numerical experiments we employ the GSHMC [5] and MMHMC [6] algorithms, introduced for sampling in 
molecular simulation and computational statistics problems, respectively. The main feature of these two algorithms that dis-
tinguishes them from other MHMC methods is the momentum update step, called Partial Momentum Monte Carlo (PMMC). 
In this step, the partial momentum refreshment is combined with a modified Metropolis test. Namely, for the current 
momentum p and a noise vector u ∼ N (0, β−1 M) a proposal in GSHMC is defined as

p∗ = cos(φ)p + sin(φ)u

u∗ =− sin(φ)p + cos(φ)u,

where the parameter φ ∈ (0, π/2] controls the amount of noise introduced in every iteration. In MMHMC, the momentum 
update is defined through the noise parameter ϕ ∈ (0, 1] (ϕ = sin2(φ)) as

p∗ = √
1 − ϕp + √

ϕu

u∗ =−√
ϕp + √

1 − ϕu.

1 The stability interval of an integrator is defined as the largest interval (0, hmax) such that the integrator is stable for all h ∈ (0, hmax).
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In the modified Metropolis test, in both GSHMC and MMHMC, the proposal (p∗, u∗) is accepted according to

(p̄, ū) =
{

(p∗,u∗) with probability P
(p,u) otherwise,

where

P = min

{
1,

exp
( − (H̃(x,p∗) + 1

2 (u∗)T M−1u∗)
)

exp
( − (H̃(x,p) + 1

2 uT M−1u)
)

}
.

This step can be considered as a standard HMC method in which the vector x is fixed, the vector p plays a role of the 
“position” and the noise vector u becomes the “conjugate momenta”. The extended Hamiltonian

Ĥ(x,p,u) = H̃(x,p) + 1

2
uᵀM−1u

defines the extended reference density π̂ (x, p, u) ∝ exp(−β Ĥ(x,p,u)).
Note that in the case of the 4th order modified Hamiltonian with analytical derivatives of the potential available, there 

is no need for additional integration steps forward and backward nor calculation of gradients within the PMMC step (see 
details in [6]). Otherwise, additional integration steps need to be performed in order to evaluate the modified Hamiltonian 
H̃(x, p∗) with the proposed momenta p∗ . The noise vectors u and ū are discarded once the momentum has been updated.

The GSHMC and MMHMC methods have been implemented in the in-house software packages MultiHMC-GROMACS [27]
and HaiCS (Hamiltonians in Computational Statistics) [6], respectively, both written in C and targeted to computers running 
UNIX certified operating systems.

The following indicators have been monitored:

• Acceptance rate (AR);
• Effective Sample Size (ESS)—indicating the number of effectively uncorrelated samples out of N collected samples;
• Monte Carlo Standard Error (MCSE)—reflects how much error is in the estimate (6) due to the use of a Monte Carlo 

method. It is related to ESS as MC S E = √
σ̂ 2/E S S , where σ̂ 2 is the sample variance;

• Total distance from the mean, defined as ‖x − μ‖ = ∑D
d=1 |x̂d − μd| for the mean μ.

The ESS and MCSE metrics are calculated as proposed in [6] for methods that produce samples being both correlated and 
weighted. The numerical results below present absolute and relative values of these metrics; larger values signal better sam-
pling. Relative values are values normalized with respect to Verlet, so that a relative value above 1 means an improvement 
over Verlet.

To make the comparison among the schemes fair, the following issues have been taken into account while producing 
the numerical results. The step size h and the number of integration steps L were adjusted to the number of stages in the 
integrator in such a way that the computational cost is equal for all tested integrators, i.e. for an r-stage integrator we set 
hr-stage = rhVerlet and Lr-stage = LVerlet/r. In all plots of numerical results, values of step sizes correspond to Verlet and imply 
step sizes r times bigger for r-stage integrators. Each individual test has been repeated 10 times; the results reported are 
obtained by averaging over the 10 runs to reduce statistical errors.

5.2. Benchmarks

Since we are expecting improvements over the Verlet integrator in problems where harmonic oscillations, or quadratic 
terms, are dominating, we choose to test the novel multi-stage integrators on benchmarks falling in this category. One 
obvious choice is a molecular simulation application, namely a benchmark describing a realistic coarse-grained system that 
corresponds to a spider venom toxin in a bilayer. In the following, we shall refer to this system as toxin. Gating-modifier 
toxins, such as spider venom toxin, are of interest as tools for probing channel-structure functions and the biophysical 
mechanisms of toxin blockade. The system has been previously studied in [28–30] and served as a benchmark in [9,15,31,
19,27]. The other benchmark selected for this study consists of sampling from multivariate Gaussian distributions. This is 
a model highly relevant to computational statistics where many important realistic problems involve distributions that are 
almost Gaussian or mixtures of Gaussians, see [32–35] among many others.

We sample these two benchmarks with the GSHMC and MMHMC methods, respectively.

5.2.1. Toxin
Toxin is a coarse-grained system describing a VSTx1 toxin in a POPC bilayer [36]. Four heavy particles are represented 

on average as one sphere [37,38], which produces a total number of 7810 particles. In the simulations performed, Coulomb 
and van der Waals interactions were solved using the shift algorithm. Both potential energies were shifted to 0 kJ mol−1 at 
the radius of 1.2 nm. Periodic boundary conditions were considered in all directions. The target temperature was chosen to 
be 310 K. No constraints were defined for this system. The tests were run over a range of time steps h. The total length of 



912 T. Radivojević et al. / Journal of Computational Physics 373 (2018) 900–916
Fig. 4. Toxin. Acceptance rates (left) and temperatures (right) as functions of the time step h. Comparison of the two-stage (M-)BCSS2, (M-)ME(2), three-stage 
(M-)BCSS3, (M-)ME(3), and Verlet integrators.

all simulations was 20 ns, which was sufficient for equilibration of the system for those choices of time steps that provided 
a stable integration. Different lengths of MD trajectories L were also tested. For the sake of clarity, in all tests presented 
here the length of MD trajectories was fixed to 4000 steps for Verlet and scaled correspondingly for two- and three-stage 
integrators. These values were found to be good choices for GSHMC with different integration schemes [27]. The angle φ
used for the momentum refreshment was set to 0.2 and the modified Hamiltonian (23) was used for all tests.

Before we compare the sampling performance of the different methods, we start by measuring the acceptance rates in 
the GSHMC simulations with different multi-stage integration schemes. A fundamental feature of the GSHMC method is 
that it maintains very high acceptance rates. We are interested in this fact since it is known that it has a direct effect in 
the improvement of the sampling efficiency [5]. The high acceptance rates are confirmed in Fig. 4 (left), where the effect 
of various multi-stage integrators and the standard Verlet on the acceptance rates in GSHMC simulations is presented. For 
small time steps, all integrators provide high acceptance rates, but the situation changes as the time step increases and the 
shorter stability intervals of the different multi-stage methods (cf. Table 1) result in acceptance rates below those achieved 
with Verlet. We observe that the integrators derived specifically for sampling with modified Hamiltonians in general show 
better acceptance rates than their non-modified counterparts. Moreover, for multi-stage schemes, the M-BCSS3 integrator 
provides the best conservation of the modified Hamiltonians and thus the highest acceptance rates. For time steps ≤ 20 fs 
the acceptance rate of M-BCSS3 is essentially the same as that of Verlet; however for very long time steps Verlet, as it 
is well known, provides the highest acceptance rate due to its better stability. The trends presented in Fig. 4 (left) are in 
a good agreement with the theoretical predictions shown in Fig. 3. This discussion, however, does not necessarily imply 
that Verlet is the integrator which would guarantee the best sampling performance of GSHMC for toxin. On the contrary, 
as we show below and due to the larger inaccuracies, the sampling performance of GSHMC when used with any tested 
integrator degrades as the time step approaches the stability limit of the integrator. Thus, the best performance is observed 
for moderate values of time steps.

The averages of the simulated temperatures T provide a check of the samples obtained. From Fig. 4 (right) it can be 
observed that all the methods are able to produce the desired averaged temperature with the exception of the two-stage 
methods derived for HMC, which, for the biggest time steps, yield unrealistically high temperatures as a result of the very 
low acceptance rates observed during the simulations in these cases.

Though acceptance rates contribute to the overall sampling efficiency of MHMC [5], the MHMC sampling performance 
cannot be determined by the acceptance rate on its own. We shall see next how the choice of integrator impacts the 
sampling efficiency of GSHMC, measured in terms of the number of effectively uncorrelated samples, i.e. ESS, delivered 
by the different simulations. Fig. 5 presents ESS of the toxin drift to the preferred interfacial location provided by GSHMC 
simulations using different integrators and time steps. In the left-hand graph, ESS is calculated for the equilibration phase. In 
the right-hand graph, ESS is shown for the production phase of the simulation. Clearly, M-BCSS3 provides the best sampling, 
as measured by ESS. For the largest time step h = 25 fs Verlet leads to the ESS value slightly better than that of M-BCSS3. 
However, that largest value of h cannot be recommended on efficiency grounds, as reducing the time step from h = 25 fs to 
h = 15 fs increases the number of independent samples by a factor larger than three and thus makes the latter (h = 15 fs) 
a more appropriate choice for this application.

The value of ESS in a given simulation depends on the specific observable of interest. In order to check that the situation 
depicted in Fig. 5 for the toxin drift is not specific to that observable, we have also studied ESS of the electrostatic/Coulombic 
interaction energy between the toxin and the bilayer. The results are given in Fig. 6, where, as in Fig. 5, the left-hand graph 
corresponds to the equilibration phase and the right-hand graph to the production phase of the simulation. As for the toxin 
drift, M-BCSS3 provides the best sampling which is achieved at h = 15 fs.

5.2.2. Multivariate Gaussian distribution
In this section we test the performance of multi-stage integrators in MMHMC with the modified Hamiltonian (13) used 

for sampling of multivariate Gaussian distributions.
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Fig. 5. Toxin. ESS for the equilibration (left) and production (right) phases of the simulations. The observable of interest is the distance traversed by the 
toxin from its initial position. Comparison of the two-stage (M-)BCSS2, (M-)ME(2), three-stage (M-)BCSS3, M-ME3, and Verlet integrators.

Fig. 6. Toxin. ESS for the equilibration (left) and production (right) phases of the simulations. The observable of interest is the electrostatic/Coulombic 
interaction energy between the toxin and the bilayer. Comparison of the two-stage (M-)BCSS2, (M-)ME(2), three-stage (M-)BCSS3, M-ME3, and Verlet 
integrators.

The goal of this benchmark, proposed in [39], is to sample from a D-dimensional Gaussian N (0, �), where the precision 
matrix �−1 is generated from a Wishart distribution with D degrees of freedom and the D-dimensional identity scale 
matrix.

We compare the performance of the standard Verlet integrator, and multi-stage schemes derived for problems with 
a quadratic potential, summarized in Table 1, for sampling from a multivariate Gaussian distribution of dimensions 
D = 100, 1000, 2000. We have identified a range of reasonable values for the parameters L, h and ϕ and performed the 
comparisons for this range. For each MC iteration the number of integration steps is drawn randomly from a uniform dis-
tribution on {1, . . . , L} and the step size is uniformly distributed from (0.8h, 1.2h). We report only results obtained with 
those choices of ϕ and L that provided the best performance of MMHMC regardless of the choice of integrator. All the 
experiments here are carried out with the identity mass matrix for MMHMC. The number of production samples generated 
is 10000 after a warm-up of 2000 discarded samples.

Fig. 7 presents the resulting acceptance rates as functions of the step size h. MHMC-specific integrators always lead to 
higher AR than their counterparts derived for the HMC method. We note that for the smallest dimension (D = 100) the 
Verlet integrator provides higher acceptance rates than all two-stage integrators, due to its larger stability limit. However, 
the new three-stage methods outperform Verlet even for this dimension. For bigger dimensions, which require smaller 
step sizes, the better conservation of the modified Hamiltonian by all multi-stage integrators (see Fig. 3) implies higher 
acceptance rates. In this case, all the newly derived multi-stage integrators show improvement over Verlet, with M-BCSS3 
being the best.

The relative sampling performance with respect to the Verlet integrator, in terms of minimum ESS (top) and maximum 
MCSE (bottom) over variates for the mean estimate (i.e. mind∈D E S S(x̂d) and maxd∈D MC S E(x̂d)), is presented in Fig. 8. Val-
ues below 1 correspond to cases of sampling efficiency lower than Verlet’s and values above 1 correspond to integrators that 
outperform Verlet. As in the case of the acceptance rates, for the smallest dimension, the Verlet integrator demonstrates 
a better performance than all two-stage methods. We note that for the smallest step sizes there is no difference among 
integrators. For bigger step sizes, the novel three-stage integrators outperform all other schemes and improve sampling effi-
ciency over Verlet up to 8 and 3 times for ESS and MCSE, respectively. The improvement increases with dimension; therefore 
we believe that for high dimensional problems the new multi-stage integrators provide crucial ingredients of efficient sam-
plers. In addition, Fig. 9 presents a comparison in terms of total distance from the mean of the target distribution; lower 
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Fig. 7. Acceptance rates as functions of the step size h for sampling from a D-dimensional Gaussian distribution. Comparison of the two-stage (M-)BCSS2, 
(M-)ME(2), three-stage (M-)BCSS3, M-ME3, and Verlet integrators.

Fig. 8. Relative sampling performance with respect to the Verlet integrator, in terms of minimum ESS (top) and maximum MCSE (bottom) over variates, 
as functions of the step size h for sampling from a D-dimensional Gaussian distribution. Comparison of the two-stage (M-)BCSS2, (M-)ME(2), three-stage 
(M-)BCSS3, M-ME3, and Verlet integrators.

Fig. 9. Total distance from the mean as function of the step size h for sampling from a D-dimensional Gaussian distribution. Comparison of the two-stage 
(M-)BCSS2, (M-)ME(2), three-stage (M-)BCSS3, M-ME3, and Verlet integrators.

values correspond to better accuracy. For high dimensions, the MHMC-specific integrators demonstrate higher accuracy than 
the commonly used Verlet.

In summary, the tests performed on multivariate Gaussian distribution demonstrate the superiority of the integrators 
specifically designed for the MHMC methods over both the standard Verlet and splitting schemes for the HMC method. The 
three-stage modified integrators clearly outperform all tested integrators for this problem.
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6. Conclusions

We have introduced new multi-stage integrators for enhanced sampling with modified Hamiltonian Monte Carlo (MHMC) 
methods. The proposed two- and three-stage integration methods provide, for reasonable choices of time steps, better con-
servation of modified Hamiltonians than the Verlet integrator commonly used in MHMC. Each of the methods derived is 
characterized by its coefficients, which were obtained from the minimization of the (expected) error in modified Hamil-
tonians introduced by numerical integration. Accordingly, we proposed computationally efficient expressions for modified 
Hamiltonians of order 4 and 6 for the multi-stage splitting integrating schemes. The new methods were tested and com-
pared with Verlet and also with splitting integrators previously suggested for sampling with HMC. The comparisons use 
benchmarks in molecular simulation and computational statistics problems, sampled with the GSHMC [5] and MMHMC [6]
methods, respectively. Both GSHMC and MMHMC belong to the MHMC class and had previously been shown to provide 
good performance when sampling in applications envisaged here. The tests of the new integration schemes reveal that the 
novel three-stage integrators lead to an outstanding improvement over the Verlet integrator for problems in which the po-
tential function is (approximately) quadratic. The improvement, which for the tested systems is of up to 8 times, comes both 
in terms of acceptance rate and sampling efficiency over a range of simulation parameters. For such application problems, 
all new integrators specifically derived for MHMC methods outperform their counterparts proposed previously for HMC.
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