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We are concerned with the time-integration of systems of ordinary 
differential equations arising from the space discretization of partial dif- 
ferential wave equations with smooth solutions. A method is suggested 
that, while being as easily implementable as the standard implicit mid- 
point rule, is fourth-order accurate. The new method is symplectic so 
that it is very well suited for long-time integrations of problems with a 
Hamiltonian structure. Numerical experiments are reported that refer to 
a fourth-order Galerkin space discretization of the Korteweg-de Vries 
equation and to a pseudospectral space discretization of the same 
equation. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Most numerical schemes for the solution of evolutionary 
partial differential equations (PDEs) can be derived in two 
stages, following the well-known method of lines methodol- 
ogy (see, e.g., [30-32, 353). First, the spatial variables are 
discretized by a finite-difference, finite-element, or spectral 
technique. This yields a system of ordinary differential 
equations (ODES) 

dU/dt = F(U), (1.1) 

where t is the time and U(t) is an unknown d-dimensional 
vector whose entries are, typically, values of the PDE solu- 
tion at the points of the spatial grid. In a second stage, the 
system ( 1.1) is integrated in time by means of an ODE 
numerical method. In this paper we are concerned with 
PDEs describing wave phenomena and having smooth 
solutions (hyperbolic systems of conservation laws with 
shock solutions are thus excluded). In the sort of problems 
we have in mind, the linear part of the right-hand side 
function F usually has purely imaginary eigenvalues, and, 
accordingly, the stability region [2] of the ODE solver 
used must have a nontrivial intersection with the imaginary 
axis. (For a survey of the relation between ODE and 
PDE numerical stability see [30].) Typical examples of 
ODE integrators with suitable stability regions include the 
explicit midpoint rule (leapfrog) 

U n+1-Ufr-1=2tF(U”) (1.2) 

(throughout, superscripts denote time-levels and r is the 
time-step), the trapezoidal rule 

vJ”)l (1.3) U “+I-U’=; [F(U”+‘)+F 

and the (closely related) implicit midpoin It rule 

U n+‘-U”=rF(;[U”+‘+U”]). (1.4) 

These three second-order methods are in fact in wide use. 
The explicit method (1.2) is extremely easy to implement 
and has a very low cost per step. On the other hand, it can 
operate only if T is limited by a stability restriction. The 
implicit methods (1.3)-( 1.4) can usually work with longer 
time-steps and this may or may not offset the disadvantage 
of their higher cost per step [ 131. 

The backward-Euler scheme 

U n+‘-Un=TF(U”+‘) 

is, like (1.3) and (1.4), stable on the whole imaginary axis, 
but, for the problems we have in mind, is not competitive 
with the methods (1.2)-( 1.4). First of all, this is only a first- 
order accurate method. Furthermore, on the imaginary 
axis, the amplification factor has modulus strictly less than 
1, and the implied dissipation makes the method unsuitable 
for long-time integrations. 

Very often there is no need to resort to something more 
sophisticated than (1.2t( 1.4); the errors coming from the 
space-discretization may be so significant that there is no 
purpose in using a high-order scheme for the time integra- 
tion of (1.1). However, if for the spatial part a high-order 
finite-difference or finite-element method is employed, it is 
sensible to try and look for a higher order time-integrator. 
Such a need for high-order time-integrators is even more 
marked [34] when the spatial part is dealt with via a 
spectrally accurate technique [S, 10, 11, 151. Fourth-order 
explicit Runge-Kutta methods are sometimes used with 
success. However, they suffer from stability step-size 
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restrictions and for finite-difference and finite-element space 
discretizations such a restriction may represent a serious 
drawback (see Section 4.2 below). Furthermore, those 
methods are dissipative for small time steps and such a 
dissipation, even if small as it corresponds to a high-order 
method, may be unwelcome in long-time integrations (see 
Section 2.1). If we seek a suitable implicit high-order 
integrator, we realize that not very many are around. In the 
class of linear multistep methods we find the popular 
backward differentiation formulae of orders 3 to 6 which are 
not suited for the problems we are interested in, due to 
their poor stability properties along the imaginary axis. 
Implicit Runge-Kutta methods of high order [2, 161 are 
often believed not to be of practical value, because of the 
difficulties implied by their implementation. 

The purpose of this paper is to present a nondissipative 
implicit fourth-order time-integrator which can be imple- 
mented as easily as the implicit midpoint rule (1.4). In fact 
a step with the new method is just a succession of three 
steps with (1.4). The new method is described in Section 2. 
Sections 3 and 4 contain two instances of the application of 
the suggested method. One of them refers to a modified 
Galerkin spatial discretization and the other to a 
pseudospectral spatial discretization. The final Section 5 is 
devoted to conclusions. 

2. THE SUGGESTED METHOD 

When the approximation U” to the solution U of (1.1) at 
time t, has been found, we determine the approximation 
U n + ’ corresponding to time t, + , = t, + z as follows. We 
first compute the auxiliary vector Y I that solves 

Y1-U”=(fi,~)F($[Y,+U”]), 

j, = (2 + 21’3 +2P”3)/3 2: 1.3512. 
(2.1) 

The vector Y, is meant to approximate U( t, + p1 T). Once 
Y 1 has been found we compute an auxiliary approximation 
Y, to U(t, + (fl, + P*)T) by solving 

Yz-Y,=(p,t)F(5CY*+Y11), 
(2.2) 

j2 = 1 - 2b, N - 1.7024. 

Finally we compute Y, N U(t, + (/?, + BZ + B3)T) = 
U( t, + 1 ) by solving 

y3-yz= (b3T) F(#,+Y,l), k=h, (2.3) 

and then set U”+’ = Y 3. We follow standard Runge-Kutta 
terminology [2, 161 and say that each of the transitions 
U”HY1, Y,HY2, and Y, H Y 3 is the computation of a 
stage of the method, whereas the overall transition 
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UnHU”+l is a step of the method. The main feature of 
(2.1)-(2.3) is that the computation of the ith stage, i= 1, 2, 
3, is just the computation of a step of the midpoint rule (1.4) 
with steplength Bj~. Thus, to implement the suggested 
method it is in fact sufficient to implement the standard 
implicit midpoint rule. Furthermore, note that, once Y 1 has 
been computed, there is no need to keep U” in memory; 
once Y, has been computed, there is no need to keep Y, , 
etc.; so that the overall step of the new method can be 
implemented with the same storage, one implements a step 
of the standard implicit midpoint rule. 

2.1. Theoretical Properties of the New Method 

As mentioned before, the method (2.1)-( 2.3 ) is of order 4, 
i.e., U” - U( t,) = O(T~), as T + 0 while t, is kept constant. A 
proof of this fact has been given in [25], where the method 
was first mentioned. It is shown in [25] that if a concatena- 
tion of three implicit midpoint steps like (2.1)-(2.3) is to 
have order 3, then the coefficients pi, i = 1,2, 3, must satisfy 
fll + flZ + f13 = 1 and fl: + /?i + /?: = 0. If, furthermore, one 
chooses B1 = fi3 then the method is time-reversible and as a 
consequence its order of accuracy must be even, i.e., 4. This 
leads to the values of pi, quoted in (2.1)-(2.3). Note that the 
equation fl: + /?: + fl: =0 implies that not all fli can be 
positive. It is the high accuracy of (2.1)-(2.3) that makes the 
method potentially interesting in the first place. 

An additional useful feature is that the method is symplec- 
tic or canonical; see the survey [24] and also [ 1, 3,4, 6, 8, 
9, 14, 17, 21-23, 25, 27, 28, 331. This means that when 
(2.1 t( 2.3) is applied to a problem ( 1.1) with a Hamiltonian 
structure, it will automatically inherit important qualitative 
features of the ODE system being integrated. Furthermore, 
for Hamiltonian problems, symplectic integrators have bet- 
ter long-time linear and nonlinear stability properties than 
their nonsymplectic counterparts. For instance, it may be 
shown rigorously [3] that, for many oscillation problems, 
canonical methods yield errors that grow linearly with time, 
where dissipative methods like explicit Runge-Kutta 
methods yield errors that grow quadratically. In general, 
there is a growing body of evidence [4, 6, 241 for the fact 
that problems (such as many wave propagation problems) 
having a Hamiltonian structure should be integrated by 
means of symplectic integrators, especially if one is 
interested in long-time simulations. Indeed, the methods 
(1.2), (1.4), which have always been in wide use for this sort 
of problems, are symplectic. The trapezoidal rule (1.3) is not 
symplectic. However, this method is closely related to (1.4). 
If a sequence {U”} satisfies the recurrence (1.4), then [7] 
the averages ( i (U” + U” + ’ )} satisfy (1.3). Hence (1.3) is, in 
a sense, equivalent to a symplectic method. (This equiv- 
alence only holds if T is kept constant during the time 
integration. With variable time-steps it is well known from 
the ODE literature [7] that stability of the trapezoidal rule 
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is inferior to that of the midpoint rule.) A fuller discussion 
of the advantages of symplectic integrators is not within the 
scope of the present paper and the interested reader is 
referred to the literature quoted above. 

Turning now to the familiar linear stability analysis, let us 
recall that for the standard midpoint rule, the application to 
the model scalar problem dU/dr = AU, 1 complex, results in 

U” = R(72)” Uo, 
1 + z/2 

R(z) = Q- 

The rational function R satisfies [R(z)1 < 1 if and only if 
%z < 0 and hence the modulus of the numerical solution U” 
grows if and only if the modulus of the theoretical solution 
U(t) grows. In particular, the method is A-stable. In view of 
the structure of the new method, it is obvious, that, for the 
model problem, (2.1)-( 2.3 ) yield 

U” = S( 7ny UO, 

S(z) = W,z) NP,z) W&z). 

Now /I* is negative, so that R&Z) has a pole in the left half- 
plane ‘Bz < 0 and, as a result, the modulus of S(z) cannot be 
bounded by unity in this half-plane. In other words, the new 
method is not A-stable. A detailed analysis of S reveals 
that if !Rz < 0 then IS(z)1 > 1 for z inside a small island 
of almost circular shape, whose intersections with the 
real axis are given by -2/I;’ I/Izl~“*= -1.1344... and 
-2 [2/I, /?* + pf I ~ ‘I* = - 1.2006.. . . The integration of a 
dissipative PDE by means of (2.1)-(2.3) would therefore 
require a stability step-size restriction. On the other hand, 
for z purely imaginary, S(z) has unit modulus, so that the 
suggested method is stable on the whole imaginary axis 
(I-stable) and hence can integrate linear wave problems 
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FIG. 1. Phase error 0 - arg R(S) as a function of the nondimensional 
steplength 0. 

with arbitrarily long values of the time-step 7. Due to the 
symplectic character, the method also has good stability 
properties when applied to nonlinear Hamiltonian 
problems. 

Since S has unit modulus on the imaginary axis, the 
amplitude errors for (2.1)-(2.3) (or for (1.2) or (1.4)) are 
zero for purely imaginary eigenvalues. In Fig. 1 we have 
depicted, for the methods (1.2), (1.4), (2.1)-(2.3), the phase 
error per step 8 - arg R(i0) as a function of the nondimen- 
sional steplength d (8 equals the product of 7 and the 
eigenvalue A). 

2.2. Implementation 

Clearly how best to implement (2.1t(2.3) is a problem- 
dependent issue that cannot be discussed once and for all 
(see Sections 3 and 4 below). Nevertheless the following 
remarks are in order. Let us start by recalling that to 
implement the standard implicit midpoint rule (1.4), it 
is computationally advisable [29] to introduce as an 
unknown the average Z = 4 [U”+ ’ + U”] that satisfies 

Z-u.=;F(Z). (2.4) 

Once (2.4) is solved for Z, the next approximation is 
obtained via a simple extrapolation, 

U n+‘=2z-U”. 

Of course, except for the case where F is linear, (2.4) must 
be solved by means of some iterative procedure. The best 
choice of such a procedure is very much problem- 
dependent. As far as the initial guess Zcol to start the 
iteration for Z, the following possibilities come easily to 
mind: 

(i) Use the approximation U” corresponding to the 
previous time level. This cheap initial guess is O(7) away 
from the solution Z of (2.4). 

(ii) Compute Zcol by means of Euler’s rule 
Zcol = U”+ (7/2) F(V). Now the initial guess is O(7’) 

away from the solution of (2.4). In PDE applications and 
for large values of 7, Euler’s method, being explicit, will lead 
to a vector Zcol, where the high Fourier modes are 
excessively represented (see, e.g., the discussion in [ 191). 

(iii) An alternative 0(7*) initial guess can be obtained 
by linear extrapolation from U”, U”- ‘, i.e., Zcol = 
;p - p- 1. 

(iv) Quadratic extrapolation from U”, Un- ‘, Unp2 is 
also possible. However, care should be exercised. According 
to (2.4), Z is a backward-Euler solution and hence its local 
error is 0(7*). Therefore, if we choose Zcol to be the value 
Q( t, + 7/2) at time fn + 7/2 of the quadratic interpolant Q(t) 
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that fits the data (t,, U”), (t,_ i, U-l), (fnp2, Une2), then 
we come up with an initial guess which is only O(t’) 
accurate (just as with the linear extrapolation above). On 
the other hand, if we recall that Z = $[U”+’ + U”] and 
take into account that the local error in U”+’ is O(r3) (as 
corresponds to a second-order method), we conclude that 
an O(r3) initialization for Z is given by the average between 
U” and the value Q(t,+ ,) of the interpolant Q(r) at time 
t=t,,,. This yields 

~c~l~~~“~~~“~‘+~~“~~~ 

After this discussion of the implementation of the implicit 
midpoint rule, let us return to the fourth-order method. The 
idea behind (2.4) can be easily applied to rewrite (2.1))( 2.3) 
as follows: 

z, -dfF(Z,), 

Y,=2Z,-U”, 

z,u,=FF(Z,), 

(2.5) 
Y,=2Z,-Y,, 

Z, - Y, = y F(Z,), 

U “+*=Yj=2z3-Y2. 

If F is nonlinear, each of the systems for Z,, Z,, Z, in (2.5) 
must be solved by a suitable iteration. The initial guesses for 
Z,, Z,, Z, may be obtained by procedures that directly 
generalize the technique in the points (ik(iv) above. For 
O(r3) accurate initialization, we again resort to the 
quadratic interpolant Q(t) through the information at 
times t,, tnpl, tnp2 and set 

Once Y i has been computed we initialize Z, with 

Zi”’ = ;CYI + Q(tn + (PI + B2)7)1. 

Finally, when Z, has been found, we set 

Z$“‘=;[Y,+Q(t,+7)]. 

2.3. Computational Cost 

The new method, while being as easily implementable as 
the implicit midpoint rule, has the advantage of its higher 
order. However, we should keep in mind that a step 
n -+ n + 1 of the new method is, in principle, as expensive 

as three steps of (1.4). Assumed first that (1.1) is a 
linear problem with time-independent coefficients, i.e., 
F(U) = AU for a suitable constant matrix A, and that the 
linear algebra is performed with a direct solver, such 
as Gaussian elimination. In these circumstances, (1.4) 
demands, once and for all, the factorization of the matrix 
I- (r/2),4 corresponding to (2.4), and then, at each time 
step, the solution of a linear system. On the other hand, 
(2.5) requires, once and for all, the factorization of two 
matrices I- (r/?r/2)A, 1-(7/?,/2)A and the SOhtiOn of 
three linear systems per step. Thus in the present scenario 
and for a given steplength 7, the new method is, per step, 
exactly three times as expensive as the implicit midpoint 
rule. In other words, to equalize costs, the implicit midpoint 
rule should be run with a third of the steplength being used 
for the fourth-order method. It is of course an open question 
to see whether the accuracy advantage that (1.4) would 
obtain by operating with a smaller value of 7 compensates 
for the higher order of the new method. 

For nonlinear problems (or for linear problems with 
iterative linear algebra) it is not as easy to compare costs 
without actually performing experiments. In fact, the num- 
ber of iterations of the procedure used to solve the algebraic 
equation depends on 7, since at lower values of 7 better 
initial guesses are available. At any rate, it is clear that to 
equalize computational costs, the method (1.4) has to be 
run with smaller steplengths than the fourth-order method 
and it remains to be seen which is, in practice, the more 
efficient of the two. The remainder of the paper is aimed at 
gaining experience in this direction. 

3. NUMERICAL ILLUSTRATION: 
FINITE ELEMENTS/FINITE DIFFERENCES 

In this section and in the section below we present 
numerical tests of the suggested fourth-order method. We 
first study finite-element/finite-difference space discretiza- 
tions and then move to spectral space discretizations. To 
keep the paper within reasonable length, we only present 
examples corresponding to the well-known Korteweg-de 
Vries (KdV) equation. This is a typical representative of the 
class of PDEs the new method is meant to deal with. 
Experiments (nor reported here) have also been performed 
which involved other equations, such as the nonlinear 
Schrodinger equation. The conclusions that can be derived 
from tests with alternative PDEs do not differ essentially 
from the conclusions for the KdV equation to be presented 
now. 

3.1. The KdV Equation 

We write the KdV equation in the form 

u, + 6uu, + u,,, = 0. (3.1) 
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This form has been used by Nom-i and Sloan in a recent 
comparison of pseudospectral methods for the KdV equa- 
tion [lS]. These authors considered both one-soliton and 
two-soliton solutions of (3.1). For reasons of brevity, we 
limit ourselves here to the most difficult one-soliton solution 
considered in [ 181. This is given by 

u(x, t) = 2 sech’(x - 4t), (3.2) 

so that the soliton amplitude is 2 and the soliton speed is 4. 
As in [IS], we consider (3.2) between the initial time t = 0 
and the final time t = 2 and limit the range of the spatial 
variable to xL = - 20 < x < 20 = xR. Outside this spatial 
range (3.2) is 0 for all practical purposes. 

We should emphasize at this stage that the aim of the 
experiments below is not to identify good numerical techni- 
ques for the KdV equation. On the contrary, we just want 
to ascertain whether, in the time-integration of the solutions 
of a given spatial semidiscretization, the new method is more 
or less efficient than the standard implicit midpoint rule. 

3.2. Space Discretization 

We use the fourth-order modified Galerkin space 
discretization suggested by Sanz-Serna and Christie [26]. 
We introduce a uniformly spaced grid in [x,, xR] given by 
the points x,~ = xL + hj, i = 0, 1, . . . . J, h = (xR - x,)/J, J a 
positive integer. If vi(t) denotes the approximation to 
u(x,, t), the functions Uj(t) solve the system of differential 
equations 

1 
+jQ qj+Zco9 O<j<J. 

Here a dot represents differentiation with respect to time 
and it is assumed that UP2, CL,, U,, , , U,, 2 vanish for all 
values of t. Note that this system of ODES is of the form 

M$=G(U), (3.3) 

where U denotes the (J + 1 )-dimensional vector with entries 
Uj, M is a (positive definite) mass-matrix, and G is a 
nonlinear function, whose Jacobian matrix possesses a 
pentadiagonal structure. The system (3.3) is not of the 

form (1.1) considered so far (i.e., is not solved for the time- 
derivatives). Nevertheless it is obvious how the methods in 
Sections 1 and 2 may be extended to cater for (3.3); for 
instance, the midpoint rule (1.4) becomes 

M(U”+’ -Un)=~G($[U”+‘+U”]). (3.4) 

Alternatively, we can think that (3.3) has been rewritten in 
the format (1.1) by setting F(U) = M -‘G(U) and then the 
time-integrators are applied to the rewritten system. This 
alternative approach is of theoretical interest because it 
shows that properties such as the order of accuracy do not 
depend on whether the time-integrator is applied to systems 
of the form (3.3) or to systems of the explicit form (1.1). On 
the other hand, the alternative approach has nothing to 
offer from a practical point of view: to evaluate A4 -‘G(U) 
one, of course, solves a system with matrix M and one is 
back in formulations like (3.4). 

3.3. Time Discretization 

The system (3.3), with initial condition taken from (3.2) 
was integrated by both the implicit midpoint rule and the 
fourth-order method (2.5). It should be stressed that the 
midpoint rule (or the closely related trapezoidal rule) is a 
“natural” method for the time-integration at hand, in fact 
this was the technique employed in the original paper [26]. 
Our aim is to see whether the suggested method is com- 
petitive with such a “natural” method. The nonlinear system 
to be solved at each step of the midpoint rule and at each 
stage of the fourth-order method is treated by Newton itera- 
tion. A fresh Jacobian is computed and factorized at each 
step of (2.4), but the factors are not updated in the suc- 
cessive Newton iterations corresponding to a given time- 
step. Similarly, a fresh Jacobian is computed and factorized 
at each stage of (2.5) but the factors are not updated in the 
successive Newton iterations corresponding to a given 
stage. The initial guess at each step/stage is found by 
quadratic extrapolation as described in Section 2.2 above. 
This only works once three past time-levels are available, so 
that in the computation of U’ and U* the initial guesses 
were taken to be U” and U’, respectively. 

3.4. Numerical Results 

The algorithms considered in this section and in Section 4 
below were implemented, using MATLAB, both on a 
Macintosh II personal computer and on a Sun SPARC- 
station. In (3.3) we set h = 0.1, a typical value. For this 
meshsize, the maximum norm error at the final time t = 2 in 
the solution of the semidiscretization (3.3) is of about 
3E - 5. It may be thought that this is too small an error for 
a PDE solution, so that perhaps the value of h is unne- 
cessarily small, However, it should be kept in mind that, 
following [ 181, errors are measured at time t = 2, which is 
a small value; in practical simulations one is interested in 
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TABLE I 

Implicit midpoint Fourth order 

Matrix Matrix 
No. of factori- Linear factori- Linear 

z steps Error zations systems Error zations systems 

5.OE-2 40 - ~ - 1.6E-2 120 408 
2.5E-2 80 3.lE-2 80 164 l.lE-3 240 631 
1.25E-2 160 7.lE-3 160 322 3.4E-5 480 967 
6.25E-3 320 1.9E-3 320 642 
3.125E-3 640 4.4E -4 640 1282 
1.5625E-3 1280 7.4E-5 1280 205 1 

monitoring the behaviour of solutions over much larger 
time intervals and one would accordingly find larger errors. 
Furthermore, it is only if small errors are aimed at that one 
should use the current fourth-order space discretization; for 
crude simulations the straightforward second-order method 
of Zabusky and Kruskal [36] would be a more suitable 
choice. In view of the spatial error to be reckoned with, we 
interrupted the Newton iteration when two consecutive 
approximations differed in less than 1 E - 6 in the maximum 
norm. The results are presented in Table I. For each 
method, the first column provides the maximum norm 
error, at t = 2, of the fully discrete solution as an approxima- 
tion to the true PDE solution (3.2). The second and third 
columns give the number of matrix factorizations and the 
number of linear systems solved. We see that to bring the 
error below the lE-4 threshold (a most reasonable 
requirement when the spatial discretization introduces 
errors of about 3E-5) the fourth-order method can 
operate with a steplength z = 0.0125 and requires 480 matrix 
factorizations and the solution of 967 linear systems. The 
implicit midpoint rule requires T = 1.5625E- 3, 1280 
factorizations, and 2051 forward/backward solves. 

In Fig. 2 we have depicted, in a loglog scale, error against IO-’ t 3 . 
4’171 ORDER 

IO-2 

8 

B IO-’ 

104 I 
. 

1. MIDPOINT 

IO-’ 

J ,,,,,,, ~ 
102 IO’ 10’ 

COST (II LINEAR SYSTEMS SOLVED) 

FIG. 2. Finite-ditTerence results, h = 0.1, I = 2. 

computational effort, as measured by the number of linear 
systems solved. It should be stressed that this, machine- 
independent measure of computational effort is biased and 
tends to favour the implicit midpoint rule. In fact, we see 
from Table I, that 642 systems for the implicit midpoint rule 
imply 320 matrix factorizations, whilst 631 systems for the 
fourth-order time-integrator go in hand with only 240 
matrix factorizations. The figure shows that the second- 
order method would be more efficient than the fourth-order 
method if errors larger than 2E - 3 were acceptable, but it is 
less efficient if smaller errors are required. 

The point of view could be taken that, once the space dis- 
cretization and spatial mesh have been suitably fixed, one 
should integrate in time in such a way that the time error is 
roughly as small as the error in the continuous-time, dis- 
crete-space solution U(t). The reason for this is that, for 
efficiency, if one is prepared to accept “large” errors from 
the time-integration, one should simultaneously move to a 
coarser spatial mesh and/or to a lower order spatial method. 
On the other hand, it is clearly wasteful to go on reducing 
the value of z when the space discretization error provides 
a bottleneck for the size of the error in the full discrete solu- 
tion. From such a point of view, Fig. 2 shows that, when the 
time-integrations are performed so as to have time errors as 
small as the spatial errors, the fourth-order method is more 
than twice as efficient as the implicit midpoint rule. 

Experiments on the coarser spatial grid h = 0.2 were also 
performed. Again one finds that, for small time errors, the 
fourth-order time-integrator should be preferred and that, 
for time errors of the size of the spatial error, the new 
method is more than twice as efficient as the second-order 
conventional method. 

It is possible that the current implementation of the 
methods is not the best conceivable and that adjustments 
leading to gains in efficiency could be made. However, any 
improvement in the implementation of the implicit mid- 
point rule would automatically imply an improvement in 
the implementation of each stage of the new method. There- 
fore we feel strongly that the conclusions we have reached as 
to the relative merit of the methods would not have to be 
modified substantially if implementation refinements were 
introduced. 

4. NUMERICAL ILLUSTRATION: 
PSEUDOSPECTRAL METHODS 

We now move to pseudospectral space discretizations of 
(3.1). The time integration of these discretizations presents 
a number of specific features that did not manifest them- 
selves in the case studied in the previous section. 

4.1. Space Discretization 

We again work with the spatial grid (xj} employed in the 
previous section, but we now suppose that all grid functions 
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considered are periodic and take at xR the same value they 
take at xL. Hence the vector U of grid approximations is 
now J-dimensional, rather than (J+ 1)-dimensional. The 
semidiscretization is given by 

dU 
dt= -6D;U2-D3U, 

with D the standard pseudospectral discretization of the 
a/ax operator. In other words, if V is a grid-function, the 
vector DV is obtained by first fitting a trigonometric 
interpolant to the entries of V and then differentiating the 
interpolant with respect to x and evaluating the derivative 
at the grid points [S, 10, 11, 13, 151. It is clear that D can 
be factorized as F - ’ AB, where F denotes the matrix that 
transforms nodal values into Fourier coeflicients and A is a 
diagonal matrix (A represents differentiation in Fourier- 
transformed space). The key points to be observed is that 
the errors in (4.1) decay faster than any power of h and that 
the matrix D is full. 

4.2. Time Discretization 

The system (4.1), with initial condition taken from (3.2), 
was integrated by both the implicit midpoint rule and the 
fourth-order time integrator. However, in the present 
application, the implicit midpoint rule is not a “natural” 
method for the time integration; it implies the solution of 
systems of coupled nonlinear algebraic equations that do 
not possess a banded structure (more on this later). In fact, 
we feel that most researchers would choose the explicit leap- 
frog method ( 1.2) for the nondissipative time-integration of 
(4.1) [ 11, 123. This has the advantage of being easily 
implementable. Furthermore, the stability restriction 
z = 0(h3) is not as bad as it is might be feared at first glance. 
In fact, with spectral techniques in space, all the Fourier 
modes that can be represented on a given grid are dealt with 
successfully by the space discretization. If a time-integrator 
is operating with the maximum value of r allowed by the 
stability restriction, then the least stable Fourier mode, say 
mode number m, is being treated by the time integrator in 
a very crude way. But then, on efficiency grounds, one 
would be better off by using a coarser spatial grid in which 
mode number m were not represented. Therefore with spec- 
tral techniques the stability restriction is not very serious; 
on efficiency grounds, one is likely to apply the methods 
with lower values of z than the largest allowed by the 
stability restriction (see the discussion in [34]). The situa- 
tion is very different with finite-difference or finite-element 
methods. There the higher frequencies are grossly falsified 
by the process of spatial discretization, so that when it 
comes to the time-integration we want to integrate the high 
frequencies in a stable way, but not accurately. Hence r 
should be chosen so that all modes are integrated in a stable 

way and the low modes are integrated accurately (see [20, 
Chap. 11). For explicit time-integrators, the best value of t 
is often close to the maximum allowed by the stability 
restriction (see, e.g., [ 131). 

Since, as explained above, the leapfrog method (1.2) is a 
good candidate for a time-integrator, we have implemented 
it as a reference method. It remains to be seen whether in the 
present circumstances an implicit method like (1.4) is com- 
petitive with (1.2) and whether the suggested fourth-order 
method (with three nonlinear systems to be solved per step) 
is competitive with the simpler methods (1.2) or (1.4). 

To implement (1.2) it is best to work in Fourier-trans- 
formed space, where we have the recursion for the Fourier 
transforms 9 U”, 

sun+ I -p-u”-’ 

=2r[-6/l ~~[Un]2-A3FUUn]. (4.2) 

Thus, per step, we perform an inverse Fourier transform to 
recover U” from its Fourier coefficients and a direct 
Fourier transform to find F[Un]’ once [Un] 2 has been 
found by pointwise multiplication. On top of these 
Fourier/inverse Fourier transforms, which imply an 
O(J log J) computational cost if performed by FFT techni- 
ques, the implementation of (4.2) requires an O(J) addi- 
tional arithmetic operation. The missing level U’ can be 
found by a step of the explicit Euler rule in a standard way. 

To implement (2.4) we also work in Fourier-transformed 
space to bring the matrix of the stiffest term u,,, into 
diagonal form. Thus we have 

9Z-Fun=; -649 [Z]2-A39-Z . 
L I 

(4.3) 

It is not sensible to solve (4.3) via Newton’s method, since 
the Jacobian matrix of the quadratic term is full. We then 
resort to the iteration 

7 
=- 

2 [ 
-(j/j ; 9T”IcZb’1]z- /j3~,Z[“+‘1 , 

I 

v=o, 1,2, . . . . (4.4) 

When 9 Zcvl is available, we perform an inverse Fourier 
transform to obtain Z[“‘, multiply pointwise to obtain 
[Zcy1]2, Fourier-transform [Zc”1]2, and apply (4.4) to find 
9 Zc” + ‘I (recall that /i is a diagonal matrix). Thus an inner 
iteration for the midpoint rule (4.3) (i.e., a transition 
v + v + 1 in (4.4)) is as expensive as a step n -+ n + 1 of the 
leapfrog method (4.2). The starting guess Zcol is found by 
quadratic extrapolation. 



The fourth-order method is implemented by setting up an 
iteration analogous to (4.4) at each stage. The initial guesses 
are found by quadratic extrapolation. 

4.3. Numerical Results 

Since the Fourier transforms are most efficient if J is a 
power of 2, we first took J= 128, which yields h = 0.3125 (64 
modes were found not to resolve the problem). For J= 128 
the maximum error in the time-continuous space-discrete 
solution is of about 3E -6. In the experiments to be 
reported, we interrupted the inner iterations of the implicit 
methods when the difference between two consecutive inner 
iterants was less than 5E-8. Since (4.4) is not a Newton 
iteration, its convergence is expected to be slow and one 
should be rather demanding in the stopping tolerance. In 
fact, inner tolerances above 5E-8 were found to damage 
the accuracy of the results. 

The results are given in Table II, where, for the implicit 
methods we give, along with the error, the number of inner 
iterations. The same information is displayed in Fig. 3, 
where the (machine independent) unit of cost is taken to be 
one step for the leapfrog scheme and one inner iteration for 
the implicit methods or, equivalently, a pair fast Fourier 
transform/inverse fast Fourier transform. We see that, in 
agreement with a previous discussion, in the explicit scheme 
‘s must be reduced well below the maximum value com- 
patible for stability if one wants to reap the benefits of the 
accurate spatial discretization being used. For coarser 
errors the implicit midpoint rule is more expensive than the 
leapfrog method. However, for small values of z that lead to 
accurate integrations, the implicit midpoint rule requires 
only one inner iteration per step. In this regime, one step of 
the implicit midpoint is as expensive as a leapfrog step and 
yields errors half as large. Therefore if one aims at time 
errors of a size comparable to that of the space errors, the 
implicit midpoint rule is a more efficient choice than the 

TABLE II 

Implicit midpoint Fourth order 

Inner Inner 
No. of Leap frog itera- itera- 

* steps Error Error tions Error tions 

1.6E-2 125 Unstable 2.OE -4 3330 
8.OE - 3 250 Unstable 1.5E-5 4341 
4.OE-3 500 Unstable 7.8E-4 2004 2.8E-6 5523 
2.OE-3 loo0 Unstable 2.OE-4 3004 
I.OE-3 2000 l.OE-4 4.9E-5 4004 
5.OE-4 4000 2.7E - 5 1.5E-5 4047 
2.5E-4 8000 8.OE-6 5.8E-6 8004 

lo4 : LEAPFROG *---..___ 
--... 

F3 

10” 
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FIG. 3. Pseudospectral results, 128 Fourier modes, t = 2. 

leapfrog method. This outcome was perhaps unexpected. 
Nevertheless, the figure clearly reveals that for accurate 
integrations the fourth-order method is the best choice, in 
spite of the computational cost stemming from the full 
matrices. 

Let us finally consider the choice J = 256, with a tolerance 
of 5E- 10 for the inner iteration. The results are given in 
Table III and Fig. 4 and show that the conjunction of a 
spectral technique in space with a high order time- 
integrator can efficiently provide extremely accurate simula- 
tions of partial differential equations. Admittedly the test 
equation has the advantage of being only one-dimensional, 
but, on other hand, it should be recalled that the simula- 
tions presented were carried out on a modest personal 
computer. 

TABLE III 

Implicit midpoint Fourth order 

Inner Inner 
No. of Leap frog itera- itera- 

5 steps Error Error tions Error tions 

1.6E-2 I25 Unstable 
8.OE-3 250 Unstable 
4.OE-3 500 Unstable 
2.OE - 3 1000 Unstable 
l.OE-3 2000 Unstable 
5.OE-4 4ooo Unstable 
2.58-4 8ooo Unstable 
1.25E-4 l6ooo 1.6E-6 
6.125E-5 32000 4.OE - 7 
3.0625E - 5 64000 l.OE-7 

2.OE-4 
5.OE-5 
1.2E-5 
3.1E-6 
7.7E-7 
2.OE-7 
5.OE - 8 

2.lE-4 4642 
1.4E-5 6519 
9.4E-7 9516 

4006 7.OE-8 14015 
6006 l.lE-8 18018 
8006 - - 

16004 
32004 
32004 - 
64004 - 
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10-3 2. J. C. Butcher, The Numerical Analysis of Differential Equations (Wiley, 
Chichester, 1987). 
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FIG. 4. Pseudospectral results, 256 Fourier modes, r = 2. 
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5. CONCLUSIONS 

A fourth-order accurate time-integrator has been 
presented for the advancement in time of simulations of 
partial differential equations describing the motion of 
smooth waves. The suggested method is of symplectic type 
and can be implemented as easily as the standard midpoint 
rule. As a case study, we have considered the time inte- 
gration of a Galerkin spatial discretization of the KdV 
equation and of a pseudospectral spatial discretization of 
the same equation. The experiments clearly show that the 
new method should be preferred to the implicit midpoint 
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found that, contrary to a widely held opinion, explicit 
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we are concerned with here. 
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